SOCR ≫ | TCIU Website ≫ | TCIU GitHub ≫ |
library(dplyr)
library(arm)
library(tidyr)
library(ggplot2)
library(ggrepel)
library(plot3D)
library(scatterplot3d)
library(plotly)
library(fastDummies)
library(forecast)
library(glmnet)
library(knitr)
library(doParallel)
library(ggrepel)
library(roxygen2)
library(devtools)
library(DT)
registerDoParallel(10, cores = detectCores()-2)
Read the Rdata file
load("Fig5.18_to_20.RData")
Load all new functions
Spacetime
AnalyticsUse Model-based and Model-free methods to predict the overall (OA) country ranking.
# 1. LASSO regression/feature extraction
# subset test data
Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , -387]
# remove columns containing NAs
X = X[ , colSums(is.na(X)) == 0]; dim(X) # [1] 31 386
## [1] 31 386
fitRidge = glmnet(as.matrix(X), Y, alpha = 0) # Ridge Regression
fitLASSO = glmnet(as.matrix(X), Y, alpha = 1) # The LASSO
# LASSO
plot(fitLASSO, xvar="lambda", label="TRUE", lwd=3)
# add label to upper x-axis
mtext("LASSO regularizer: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
# Ridge
plot(fitRidge, xvar="lambda", label="TRUE", lwd=3)
# add label to upper x-axis
mtext("Ridge regularizer: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
#### 10-fold cross validation ####
# LASSO
set.seed(1234) # set seed
# (10-fold) cross validation for the LASSO
cvLASSO = cv.glmnet(data.matrix(X), Y, alpha = 1, parallel=TRUE)
cvRidge = cv.glmnet(data.matrix(X), Y, alpha = 0, parallel=TRUE)
plot(cvLASSO)
mtext("CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO <- predict(cvLASSO, s = cvLASSO$lambda.min, newx = data.matrix(X))
testMSE_LASSO <- mean((predLASSO - Y)^2); testMSE_LASSO
## [1] 8.666992
predLASSO = predict(cvLASSO, s = cvLASSO$lambda.min, newx = data.matrix(X))
predRidge = predict(fitRidge, s = cvRidge$lambda.min, newx = data.matrix(X))
# calculate test set MSE
testMSELASSO = mean((predLASSO - Y)^2)
testMSERidge = mean((predRidge - Y)^2)
##################################Use only ARIMA effects, no SOCR meta-data#####
set.seed(4321)
cvLASSO_lim = cv.glmnet(data.matrix(X[ , 1:(42*9)]), Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_lim)
mtext("CV LASSO (using only Timeseries data): Number of Nonzero (Active) Coefficients", side=3, line=2.5)
# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_lim <- predict(cvLASSO_lim, s = 3, # cvLASSO_lim$lambda.min,
newx = data.matrix(X[ , 1:(42*9)]))
coefList_lim <- coef(cvLASSO_lim, s=3) # 'lambda.min')
coefList_lim <- data.frame(coefList_lim@Dimnames[[1]][coefList_lim@i+1],coefList_lim@x)
names(coefList_lim) <- c('Feature','EffectSize')
datatable(arrange(coefList_lim, -abs(EffectSize))[2:10, ],fillContainer = TRUE)
cor(Y, predLASSO_lim[, 1]) # 0.84
## [1] 0.8428065
################################################################################
# Plot Regression Coefficients: create variable names for plotting
# par(mar=c(2, 13, 1, 1)) # extra large left margin # par(mar=c(5,5,5,5))
varNames <- colnames(X); datatable(data.frame(varNames),fillContainer = TRUE); length(varNames)
## [1] 386
betaHatLASSO = as.double(coef(fitLASSO, s = cvLASSO$lambda.min)) # cvLASSO$lambda.1se
betaHatRidge = as.double(coef(fitRidge, s = cvRidge$lambda.min))
#coefplot(betaHatLASSO[2:386], sd = rep(0, 385), pch=0, cex.pts = 3, main = "LASSO-Regularized Regression Coefficient Estimates", varnames = varNames)
coefplot(betaHatLASSO[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", main = "LASSO-Regularized Regression Coefficient Estimates", varnames = varNames[377:386])
coefplot(betaHatRidge[377:386], sd = rep(0, 10), pch=2, add = TRUE, col.pts = "blue", cex.pts = 3)
legend("bottomleft", c("LASSO", "Ridge"), col = c("red", "blue"), pch = c(1 , 2), bty = "o", cex = 2)
varImp <- function(object, lambda = NULL, ...) {
## skipping a few lines
beta <- predict(object, s = lambda, type = "coef")
if(is.list(beta)) {
out <- do.call("cbind", lapply(beta, function(x) x[,1]))
out <- as.data.frame(out)
} else out <- data.frame(Overall = beta[,1])
out <- abs(out[rownames(out) != "(Intercept)",,drop = FALSE])
out
}
datatable(varImp(cvLASSO, lambda = cvLASSO$lambda.min),fillContainer = TRUE)
coefList <- coef(cvLASSO, s='lambda.min')
coefList <- data.frame(coefList@Dimnames[[1]][coefList@i+1],coefList@x)
names(coefList) <- c('Feature','EffectSize')
datatable(arrange(coefList, -abs(EffectSize))[2:10, ],fillContainer = TRUE)
# var val # Feature names: colnames(list_of_dfs_CommonFeatures[[1]])
#1 (Intercept) 49.4896874
#2 Feature_1_ArimaVec_8 -2.4050811 # Feature 1 = Active population: Females 15 to 64 years
#3 Feature_20_ArimaVec_8 -1.4015001 # Feature 20= "Employment: Females 15 to 64 years
#4 IncomeGroup -1.2271177
#5 Feature_9_ArimaVec_8 -1.0629835 # Feature 9= Active population: Total 15 to 64 years
#6 ED -0.7481041
#7 PE -0.5167668
#8 Feature_25_ArimaVec_5 0.4416775 # Feature 25= Property income
#9 Feature_9_ArimaVec_4 -0.2217804
#10 QOL -0.1965342
# ARIMA: 4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#
#9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA,
# 7=period, 8=non-seasonal Diff, 9=seasonal differences)
# [1] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"
# [2] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"
# [3] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"
# [4] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
# [5] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"
# [6] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"
# [7] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"
# [8] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
# [9] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"
#[10] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"
#[11] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"
#[12] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
#[13] "All ISCED 2011 levels "
# [14] "All ISCED 2011 levels, Females"
# [15] "All ISCED 2011 levels, Males"
# [16] "Capital transfers, payable"
# [17] "Capital transfers, receivable"
# [18] "Compensation of employees, payable"
# [19] "Current taxes on income, wealth, etc., receivable"
#[20] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels "
# [21] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"
# [22] "Other current transfers, payable"
# [23] "Other current transfers, receivable"
# [24] "Property income, payable"
# [25] "Property income, receivable"
# [26] "Savings, gross"
# [27] "Subsidies, payable"
# [28] "Taxes on production and imports, receivable"
# [29] "Total general government expenditure"
# [30] "Total general government revenue"
# [31] "Unemployment , Females, From 15-64 years, Total"
# [32] "Unemployment , Males, From 15-64 years"
# [33] "Unemployment , Males, From 15-64 years, from 1 to 2 months"
# [34] "Unemployment , Males, From 15-64 years, from 3 to 5 months"
# [35] "Unemployment , Males, From 15-64 years, from 6 to 11 months"
# [36] "Unemployment , Total, From 15-64 years, From 1 to 2 months"
# [37] "Unemployment , Total, From 15-64 years, From 12 to 17 months"
# [38] "Unemployment , Total, From 15-64 years, From 3 to 5 months"
# [39] "Unemployment , Total, From 15-64 years, From 6 to 11 months"
# [40] "Unemployment , Total, From 15-64 years, Less than 1 month"
# [41] "Unemployment by sex, age, duration. DurationNA not started"
# [42] "VAT, receivable"
coef(cvLASSO, s = "lambda.min") %>%
broom::tidy() %>%
filter(row != "(Intercept)") %>%
top_n(100, wt = abs(value)) %>%
ggplot(aes(value, reorder(row, value), color = value > 0)) +
geom_point(show.legend = FALSE, aes(size = abs(value))) +
ggtitle("Top 9 salient features (LASSO penalty)") +
xlab("Effect-size") +
ylab(NULL)
validation <- data.frame(matrix(NA, nrow = dim(predLASSO)[1], ncol=3), row.names=countryNames)
validation [ , 1] <- Y; validation [ , 2] <- predLASSO_lim[, 1]; validation [ , 3] <- predRidge[, 1]
colnames(validation) <- c("Y", "LASSO", "Ridge")
dim(validation)
## [1] 31 3
datatable(validation,fillContainer = TRUE)
# Prediction correlations:
cor(validation[ , 1], validation[, 2]) # Y=observed OA rank vs. LASSO-pred 0.96 (lim) 0.84
## [1] 0.8428065
cor(validation[ , 1], validation[, 3]) # Y=observed OA rank vs. Ridge-pred 0.95
## [1] 0.9462362
# Plot observed Y (Overall Counry ranking) vs. LASSO (9-parameters) predicted Y^
linFit1 <- lm(validation[ , 1] ~ predLASSO)
plot(validation[ , 1] ~ predLASSO,
col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
xlab="Observed Country Overall Ranking", ylab="LASSO 9/(42*9) param model",
main = sprintf("Observed (X) vs. LASSO-Predicted (Y) Overall Country Ranking, cor=%.02f",
cor(validation[ , 1], validation[, 2])))
abline(linFit1, lwd=3, col="red")
# Plot observed LASSO (9-parameters) predicted Y^ vs. Y (Overall Counry ranking)
linFit1 <- lm(predLASSO_lim ~ validation[ , 1])
plot(predLASSO_lim ~ validation[ , 1],
col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
xlab="Observed Country Overall Ranking", ylab="LASSO 9/(42*9) param model",
main = sprintf("Observed (X) vs. LASSO-Predicted (Y) Overall Country Ranking, cor=%.02f",
cor(validation[ , 1], validation[, 2])))
abline(linFit1, lwd=3, col="red")
Spacekime
AnalyticsUse Model-based and Model-free methods to predict the overall (OA) country ranking.
# Generic function to Transform Data ={all predictors (X) and outcome (Y)} to k-space (Fourier domain): kSpaceTransform(data, inverse = FALSE, reconPhases = NULL)
# ForwardFT (rawData, FALSE, NULL)
# InverseFT(magnitudes, TRUE, reconPhasesToUse) or InverseFT(FT_data, TRUE, NULL)
# DATA
# subset test data
# Y = aggregate_arima_vector_country_ranking_df$OA
# X = aggregate_arima_vector_country_ranking_df[ , -387]
# remove columns containing NAs
# X = X[ , colSums(is.na(X)) == 0]; dim(X) # [1] 31 386
length(Y); dim(X)
## [1] 31
## [1] 31 386
FT_aggregate_arima_vector_country_ranking_df <-
kSpaceTransform(aggregate_arima_vector_country_ranking_df, inverse = FALSE, reconPhases = NULL)
## Kime-Phase Distributions
# Examine the Kime-direction Distributions of the Phases for all *Belgium* features (predictors + outcome). Define a generic function that plots the Phase distributions.
# plotPhaseDistributions(dataFT, dataColnames)
plotPhaseDistributions(FT_aggregate_arima_vector_country_ranking_df,
colnames(aggregate_arima_vector_country_ranking_df), size=4, cex=0.1)
IFT_FT_aggregate_arima_vector_country_ranking_df <-
kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes,
TRUE, FT_aggregate_arima_vector_country_ranking_df$phases)
# Check IFT(FT) == I:
# ifelse(aggregate_arima_vector_country_ranking_df[5,4] -
# Re(IFT_FT_aggregate_arima_vector_country_ranking_df[5,4]) < 0.001, "Perfect Syntesis", "Problems!!!")
##############################################
# Nil-Phase Synthesis and LASSO model estimation
# 1. Nil-Phase data synthesys (reconstruction)
temp_Data <- aggregate_arima_vector_country_ranking_df
nilPhase_FT_aggregate_arima_vector <-
array(complex(real=0, imaginary=0), c(dim(temp_Data)[1], dim(temp_Data)[2]))
dim(nilPhase_FT_aggregate_arima_vector) # ; head(nilPhase_FT_aggregate_arima_vector)
## [1] 31 387
# [1] 31 387
IFT_NilPhase_FT_aggregate_arima_vector <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))
# Invert back to spacetime the
# FT_aggregate_arima_vector_country_ranking_df$magnitudes[ , i] signal with nil-phase
IFT_NilPhase_FT_aggregate_arima_vector <-
Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes,
TRUE, nilPhase_FT_aggregate_arima_vector))
colnames(IFT_NilPhase_FT_aggregate_arima_vector) <-
colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_NilPhase_FT_aggregate_arima_vector) <-
rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_NilPhase_FT_aggregate_arima_vector)
## [1] 31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1] 31 387
datatable(data.frame(colnames(IFT_NilPhase_FT_aggregate_arima_vector)),fillContainer = TRUE)
# IFT_NilPhase_FT_aggregate_arima_vector[1:5, 1:4]; temp_Data[1:5, 1:4]
# 2. Perform LASSO modeling on IFT_NilPhase_FT_aggregate_arima_vector;
# report param estimates and quality metrics AIC/BIC
# library(forecast)
set.seed(54321)
cvLASSO_kime = cv.glmnet(data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , -387]),
# IFT_NilPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime)
mtext("(Spacekime, Nil-phase) CV LASSO: Number of Nonzero (Active) Coefficients",
side=3, line=2.5)
# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime <- predict(cvLASSO_kime, s = cvLASSO_kime$lambda.min,
newx = data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , -387]))
datatable(predLASSO_kime,fillContainer = TRUE)
# testMSE_LASSO_kime <- mean((predLASSO_kime - IFT_NilPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_kime
predLASSO_kime = predict(cvLASSO_kime, s = exp(1/3), # cvLASSO_kime$lambda.min,
newx = data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , -387]))
datatable(predLASSO_kime,fillContainer = TRUE)
##################################Use only ARIMA effects, no SOCR meta-data#####
set.seed(12345)
cvLASSO_kime_lim = cv.glmnet(data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , 1:(42*9)]),
Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_lim)
mtext("CV LASSO Nil-Phase (using only Timeseries data): Number of Nonzero (Active) Coefficients",
side=3, line=2.5)
# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_lim <- predict(cvLASSO_kime_lim, s = 1,
newx = data.matrix(X[ , 1:(42*9)]))
coefList_kime_lim <- coef(cvLASSO_kime_lim, s=1)
coefList_kime_lim <- data.frame(coefList_kime_lim@Dimnames[[1]][coefList_kime_lim@i+1],coefList_kime_lim@x)
names(coefList_kime_lim) <- c('Feature','EffectSize')
arrange(coefList_kime_lim, -abs(EffectSize))[2:10, ]
## Feature EffectSize
## 2 Feature_12_ArimaVec_8 -8.662856430
## 3 Feature_11_ArimaVec_4 8.585283751
## 4 Feature_12_ArimaVec_4 -5.023601842
## 5 Feature_30_ArimaVec_4 2.242157842
## 6 Feature_26_ArimaVec_6 1.760267216
## 7 Feature_39_ArimaVec_5 -1.256101950
## 8 Feature_34_ArimaVec_5 -1.148865337
## 9 Feature_37_ArimaVec_2 0.001322367
## NA <NA> NA
cor(Y, predLASSO_kime_lim[, 1]) # 0.1142824
## [1] 0.1142824
################################################################################
# Plot Regression Coefficients: create variable names for plotting
# par(mar=c(2, 13, 1, 1)) # extra large left margin # par(mar=c(5,5,5,5))
# varNames <- colnames(X); varNames; length(varNames)
betaHatLASSO_kime = as.double(coef(cvLASSO_kime, s=cvLASSO_kime$lambda.min))
#cvLASSO_kime$lambda.1se
coefplot(betaHatLASSO_kime[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red",
main = "(Spacekime) LASSO-Regularized Regression Coefficient Estimates",
varnames = varNames[377:386])
datatable(varImp(cvLASSO_kime, lambda = cvLASSO_kime$lambda.min),fillContainer = TRUE)
coefList_kime <- coef(cvLASSO_kime, s=1) # 'lambda.min')
coefList_kime <- data.frame(coefList_kime@Dimnames[[1]][coefList_kime@i+1], coefList_kime@x)
names(coefList_kime) <- c('Feature','EffectSize')
datatable(arrange(coefList_kime, -abs(EffectSize))[1:9, ],fillContainer = TRUE)
# Feature EffectSize
#1 (Intercept) 26.069326257
#2 Feature_12_ArimaVec_8 -8.662856430
#3 Feature_11_ArimaVec_4 8.585283751
#4 Feature_12_ArimaVec_4 -5.023601842
#5 Feature_30_ArimaVec_4 2.242157842
#6 Feature_26_ArimaVec_6 1.760267216
#7 Feature_39_ArimaVec_5 -1.256101950
#8 Feature_34_ArimaVec_5 -1.148865337
#9 Feature_37_ArimaVec_2 0.001322367
# ARIMA-spacetime: 4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
# ARIMA-spacekimeNil: 2=forecast_avg, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 8=non-seasonal Diff
#9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA,
# 7=period, 8=non-seasonal Diff, 9=seasonal differences)
coef(cvLASSO_kime, s = 1/5) %>% ### "lambda.min") %>%
broom::tidy() %>%
filter(row != "(Intercept)") %>%
top_n(100, wt = abs(value)) %>%
ggplot(aes(value, reorder(row, value), color = value > 0)) +
geom_point(show.legend = FALSE, aes(size = abs(value))) +
ggtitle("(Spacekime) Top 9 salient features (LASSO penalty)") +
xlab("Effect-size") +
ylab(NULL)
# pack a 31*3 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, Y)
validation_kime <- cbind(predLASSO_kime[, 1],
IFT_NilPhase_FT_aggregate_arima_vector[ , 387], Y)
colnames(validation_kime) <- c("predLASSO_kime", "IFT_NilPhase_FT_Y", "Orig_Y")
datatable(validation_kime,fillContainer = TRUE)
# Prediction correlations:
cor(validation_kime[ , 1], validation_kime[, 2]) # Y=predLASSO_kime OA rank vs. kime_LASSO_pred: 0.99
## [1] -0.3346322
cor(validation_kime[ , 1], validation_kime[, 3]) # Y=predLASSO_kime OA rank vs. Orig_Y: 0.64
## [1] 0.6055817
# Plot observed Y (Overall Counry ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_kime <- lm(predLASSO_kime ~ validation_kime[ , 3])
plot(predLASSO_kime ~ validation_kime[ , 3],
col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
xlab="Observed Country Overall Ranking", ylab="IFT_NilPhase predLASSO_kime",
main = sprintf("Observed (x) vs. IFT_NilPhase Predicted (y) Overall Country Ranking, cor=%.02f",
cor(validation_kime[ , 1], validation_kime[, 3])))
abline(linFit1_kime, lwd=3, col="red")
# abline(linFit1, lwd=3, col="green")
##############################################
# 3. Swap Feature Phases and then synthesize the data (reconstruction)
# temp_Data <- aggregate_arima_vector_country_ranking_df
swappedPhase_FT_aggregate_arima_vector <- FT_aggregate_arima_vector_country_ranking_df$phases
dim(swappedPhase_FT_aggregate_arima_vector) # ; head(swappedPhase_FT_aggregate_arima_vector)
## [1] 31 387
# [1] 31 387
IFT_SwappedPhase_FT_aggregate_arima_vector <- array(complex(),
c(dim(temp_Data)[1], dim(temp_Data)[2]))
set.seed(12345) # sample randomly Phase-columns for each of the 131 covariates (X)
swappedPhase_FT_aggregate_arima_vector1 <- as.data.frame(cbind(
swappedPhase_FT_aggregate_arima_vector[ ,
sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 1:378]))], # mix ARIMA signature phases
swappedPhase_FT_aggregate_arima_vector[ ,
sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 379:386]))],# mix the meta-data phases
swappedPhase_FT_aggregate_arima_vector[ , 387])) # add correct Outcome phase
swappedPhase_FT_aggregate_arima_vector <- swappedPhase_FT_aggregate_arima_vector1
colnames(swappedPhase_FT_aggregate_arima_vector) <- colnames(temp_Data)
datatable(data.frame(colnames(swappedPhase_FT_aggregate_arima_vector)),fillContainer = TRUE)
dim(swappedPhase_FT_aggregate_arima_vector)
## [1] 31 387
# 31 387
# Invert back to spacetime the
# FT_aggregate_arima_vector$magnitudes[ , i] signal with swapped-X-phases (Y-phase is fixed)
IFT_SwappedPhase_FT_aggregate_arima_vector <-
Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes,
TRUE, swappedPhase_FT_aggregate_arima_vector))
colnames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_SwappedPhase_FT_aggregate_arima_vector)
## [1] 31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1] 31 387
datatable(data.frame(colnames(IFT_SwappedPhase_FT_aggregate_arima_vector)),fillContainer = TRUE)
# IFT_SwappedPhase_FT_aggregate_arima_vector[1:5, 1:4]; temp_Data[1:5, 1:4]
# 2. Perform LASSO modeling on IFT_SwappedPhase_FT_aggregate_arima_vector;
# report param estimates and quality metrics AIC/BIC
set.seed(12345)
cvLASSO_kime_swapped =
cv.glmnet(data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , -387]),
# IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_swapped)
mtext("(Spacekime, Swapped-Phases) CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
##################################Use only ARIMA effects, no SOCR meta-data#####
set.seed(12345)
cvLASSO_kime_swapped_lim = cv.glmnet(data.matrix(
IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:(42*9)]), Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_swapped_lim)
mtext("CV LASSO Swapped-Phase (using only Timeseries data): Number of Nonzero (Active) Coefficients", side=3, line=2.5)
# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_swapped_lim <- predict(cvLASSO_kime_swapped_lim,
s = cvLASSO_kime_swapped_lim$lambda.min,
newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:(42*9)]))
coefList_kime_swapped_lim <- coef(cvLASSO_kime_swapped_lim, s='lambda.min')
coefList_kime_swapped_lim <- data.frame(coefList_kime_swapped_lim@Dimnames[[1]][coefList_kime_swapped_lim@i+1],coefList_kime_swapped_lim@x)
names(coefList_kime_swapped_lim) <- c('Feature','EffectSize')
datatable(arrange(coefList_kime_swapped_lim, -abs(EffectSize))[2:10, ],fillContainer = TRUE)
cor(Y, predLASSO_kime_swapped_lim[, 1]) # 0.86
## [1] 0.5808904
################################################################################
# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_swapped <- predict(cvLASSO_kime_swapped, s = cvLASSO_kime_swapped$lambda.min,
newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , -387]))
# testMSE_LASSO_kime_swapped <-
# mean((predLASSO_kime_swapped - IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_kime_swapped
predLASSO_kime_swapped = predict(cvLASSO_kime_swapped, s = 3,
newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , -387]))
datatable(predLASSO_kime_swapped,fillContainer = TRUE)
# Plot Regression Coefficients: create variable names for plotting
betaHatLASSO_kime_swapped = as.double(coef(cvLASSO_kime_swapped,
s=cvLASSO_kime_swapped$lambda.min))
#cvLASSO_kime_swapped$lambda.1se
coefplot(betaHatLASSO_kime_swapped[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red",
main = "(Spacekime, Swapped-Phases) LASSO-Regularized Regression Coefficient Estimates",
varnames = varNames[377:386])
datatable(varImp(cvLASSO_kime_swapped, lambda = cvLASSO_kime_swapped$lambda.min),fillContainer = TRUE)
coefList_kime_swapped <- coef(cvLASSO_kime_swapped, s=3) # 'lambda.min')
coefList_kime_swapped <- data.frame(coefList_kime_swapped@Dimnames[[1]][coefList_kime_swapped@i+1], coefList_kime_swapped@x)
names(coefList_kime_swapped) <- c('Feature','EffectSize')
datatable(arrange(coefList_kime_swapped, -abs(EffectSize))[2:10, ],fillContainer = TRUE)
# Feature EffectSize
#2 Feature_32_ArimaVec_6 3.3820076
#3 Feature_1_ArimaVec_3 2.2133139
#4 Feature_21_ArimaVec_4 1.5376447
#5 Feature_22_ArimaVec_3 1.0546605
#6 Feature_14_ArimaVec_5 0.7428693
#7 ED 0.6525794
#8 Feature_24_ArimaVec_5 0.5987113
#9 Feature_12_ArimaVec_5 0.3177650
#10 Feature_37_ArimaVec_6 0.1598574
#
# ARIMA-spacetime: 4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
# ARIMA-spacekime_nill: 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
# ARIMA-spacekime_swapped: 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
# 9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA,
# 7=period, 8=non-seasonal Diff, 9=seasonal differences)
coef(cvLASSO_kime_swapped, s = 3) %>% # "lambda.min") %>%
broom::tidy() %>%
filter(row != "(Intercept)") %>%
top_n(100, wt = abs(value)) %>%
ggplot(aes(value, reorder(row, value), color = value > 0)) +
geom_point(show.legend = FALSE, aes(size = abs(value))) +
ggtitle("(Spacekime, Swapped-Phases) Top 9 salient features (LASSO penalty)") +
xlab("Effect-size") +
ylab(NULL)
# pack a 31*4 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y,
# IFT_SwappedPhase_FT_aggregate_arima_vector_Y, Y)
validation_kime_swapped <- cbind(predLASSO_lim[, 1],
predLASSO_kime[ , 1], predLASSO_kime_swapped[ , 1], Y)
colnames(validation_kime_swapped) <- c("predLASSO (spacetime)", "predLASSO_IFT_NilPhase",
"predLASSO_IFT_SwappedPhase", "Orig_Y")
datatable(data.frame(validation_kime_swapped),fillContainer = TRUE)
dim(validation_kime_swapped)
## [1] 31 4
# Prediction correlations:
cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])
## [1] 0.8690508
# predLASSO_IFT_SwappedPhase OA rank vs. predLASSO_spacekime: 0.7
cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 3])
## [1] 0.8671455
# predLASSO (spacetime) vs. predLASSO_IFT_SwappedPhase OA rank: 0.83
# Plot observed Y (Overall Counry ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_kime_swapped <- lm(validation_kime_swapped[ , 4] ~ predLASSO)
plot(validation_kime_swapped[ , 4] ~ predLASSO,
col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
xlab="predLASSO_spacekime Country Overall Ranking", ylab="predLASSO_IFT_SwappedPhase_FT_Y",
main = sprintf("Spacetime Predicted (x) vs. Kime IFT_SwappedPhase_FT_Y (y) Overall Country Ranking, cor=%.02f",
cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_kime_swapped, lwd=3, col="red")
#abline(linFit1_kime, lwd=3, col="green")
# Plot Spacetime LASSO forecasting
# Plot observed Y (Overall Counry ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_spacetime <- lm(validation_kime_swapped[ , 1] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 1] ~ validation_kime_swapped[ , 4],
col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
xlab="Observed Country Overall Ranking", ylab="predLASSO_spacetime",
main = sprintf("Spacetime Predicted (y) vs. Obaserved (x) Overall Country Ranking, cor=%.02f",
cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 4])))
abline(linFit1_spacetime, lwd=3, col="red")
# test with using swapped-phases LASSO estiumates
linFit1_spacekime <- lm(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4],
col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
xlab="Observed Country Overall Ranking", ylab="predLASSO_spacekime Swapped-Phases",
main = sprintf("Spacekime Predicted, Swapped-Phases (y) vs. Obaserved (x) Overall Country Ranking, cor=%.02f",
cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_spacekime, lwd=3, col="red")
# add Top_30_Ranking_Indicator
validation_kime_swapped <- as.data.frame(cbind(validation_kime_swapped, ifelse (validation_kime_swapped[,4]<=30, 1, 0)))
colnames(validation_kime_swapped)[5] <- "Top30Rank"
head(validation_kime_swapped)
## predLASSO (spacetime) predLASSO_IFT_NilPhase
## Austria 20.21660 18.60234
## Belgium 24.57457 20.87543
## Bulgaria 27.42736 21.61560
## Croatia 25.84568 23.50550
## Cyprus 27.80166 28.40317
## Czech Republic 24.17704 23.87474
## predLASSO_IFT_SwappedPhase Orig_Y Top30Rank
## Austria 23.12722 18 1
## Belgium 25.08993 19 1
## Bulgaria 26.37123 38 0
## Croatia 24.49146 28 1
## Cyprus 32.18316 50 0
## Czech Republic 23.46056 25 1
# Spacetime LASSO modeling
myPlotSpacetime <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
y=`predLASSO (spacetime)`, label=rownames(validation_kime_swapped))) +
geom_point() +
# Color by groups
# geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
geom_label_repel(aes(label = rownames(validation_kime_swapped),
fill = factor(Top30Rank)), color = 'black', size = 5,
point.padding = unit(0.3, "lines")) +
# theme(legend.position = "bottom") +
theme(legend.position = c(0.1, 0.9),
legend.text = element_text(colour="black", size=12, face="bold"),
legend.title = element_text(colour="black", size=14, face="bold")) +
scale_fill_discrete(name = "Country Overall Ranking",
labels = c("Below 30 Rank", "Top 30 Rank")) +
labs(title=sprintf("Spacetime LASSO Prediction (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 4])),
x ="Observed Overall Country Ranking (1 is 'best')",
y = "Spacetime LASSO Rank Forecasting")
myPlotSpacetime
# NIL-PHASE KIME reconstruction
myPlotNilPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
y=predLASSO_kime, label=rownames(validation_kime_swapped))) +
geom_point() +
# Color by groups
# geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
geom_label_repel(aes(label = rownames(validation_kime_swapped),
fill = factor(Top30Rank)), color = 'black', size = 5,
point.padding = unit(0.3, "lines")) +
# theme(legend.position = "bottom") +
theme(legend.position = c(0.1, 0.9),
legend.text = element_text(colour="black", size=12, face="bold"),
legend.title = element_text(colour="black", size=14, face="bold")) +
scale_fill_discrete(name = "Country Overall Ranking",
labels = c("Below 30 Rank", "Top 30 Rank")) +
labs(title=sprintf("Spacekime LASSO Predicted, Nil-Phases, (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", cor(validation_kime_swapped[ , 2], validation_kime_swapped[, 4])),
x ="Observed Overall Country Ranking (1 is 'best')",
y = "Spacekime LASSO Predicted, using Nil-Phases")
myPlotNilPhase
# SWAPPED PHASE KIME reconstruction
myPlotSwappedPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
y=predLASSO_kime_swapped, label=rownames(validation_kime_swapped))) +
geom_point() +
# Color by groups
# geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
geom_label_repel(aes(label = rownames(validation_kime_swapped),
fill = factor(Top30Rank)), color = 'black', size = 5,
point.padding = unit(0.3, "lines")) +
# theme(legend.position = "bottom") +
theme(legend.position = c(0.1, 0.9),
legend.text = element_text(colour="black", size=12, face="bold"),
legend.title = element_text(colour="black", size=14, face="bold")) +
scale_fill_discrete(name = "Country Overall Ranking",
labels = c("Below 30 Rank", "Top 30 Rank")) +
labs(title=sprintf("Spacekime LASSO Predicted, Swapped-Phases, (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])),
x ="Observed Overall Country Ranking (1 is 'best')",
y = "Spacekime LASSO Predicted, using Swapped-Phases")
myPlotSwappedPhase
countryNames[11]<-"Germany"
aggregateResults <- (rbind(cbind(as.character(countryNames), "predLASSO_spacetime", as.numeric(predLASSO)),
cbind(as.character(countryNames), "predLASSO_lim", predLASSO_lim),
cbind(as.character(countryNames), "predLASSO_nil", predLASSO_kime),
cbind(as.character(countryNames), "predLASSO_swapped", predLASSO_kime_swapped),
cbind(as.character(countryNames), "observed", Y)
))
aggregateResults <- data.frame(aggregateResults[ , -3], as.numeric(aggregateResults[,3]))
colnames(aggregateResults) <- c("country", "estimate_method", "ranking")
ggplot(aggregateResults, aes(x=country, y=ranking, color=estimate_method)) +
geom_point(aes(shape=estimate_method, color=estimate_method, size=estimate_method)) + geom_point(size = 5) +
geom_line(data = aggregateResults[aggregateResults$estimate_method == "observed", ],
aes(group = estimate_method), size=2, linetype = "dashed") +
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=.5)) +
# theme(legend.position = "bottom") +
# scale_shape_manual(values = as.factor(aggregateResults$estimate_method)) +
theme(text = element_text(size = 15), legend.position = c(0.3, 0.85),
axis.text=element_text(size=16),
legend.text = element_text(colour="black", size=12, face="bold"),
legend.title = element_text(colour="black", size=14, face="bold"))
# + scale_fill_discrete(
# name="Country Overall Ranking",
# breaks=c("predLASSO_spacetime", "predLASSO_lim", "predLASSO_nil", "predLASSO_swapped", "observed"),
# labels=c(sprintf("predLASSO_spacetime LASSO Predicted (386), cor=%.02f", cor(predLASSO, Y)),
# sprintf("predLASSO_lim LASSO Predicted (378), cor=%.02f", cor(predLASSO_lim, Y)),
# sprintf("predLASSO_nil (spacekime) LASSO Predicted, cor=%.02f", cor(predLASSO_kime, Y)),
# sprintf("predLASSO_swapped (spacekime) LASSO Predicted, cor=%.02f", cor(predLASSO_kime_swapped, Y)),
# "observed"))
Using only the 378 ARIMA signatures for the prediction (out of the total of 386 features).
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Normal",Seed = 54321,lam = 1,result = 1)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Normal",Seed = 54321,lam = 1,result = 2)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Normal",Seed = 54321,lam = 1,result = 3)
BOOK VI-178 Figure 5.18
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Normal",Seed = 54321,lam = 1,result = 4)
## png
## 2
BOOK VI-178 Figure 5.18
WN_SKR<-Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Normal",Seed = 54321,lam = 1,result = 5)
WN_SKR$dimX
## [1] 31 378
datatable(WN_SKR$Coef_first9,fillContainer = TRUE)
WN_SKR$COR_pred_true
## [1] 0.8428065
datatable(WN_SKR$LASSO_Varimp,fillContainer = TRUE)
WN_SKR$dimLASSO
## [1] 31 2
datatable(WN_SKR$LASSO_part_feature,fillContainer = TRUE)
datatable(WN_SKR$LASSO_rename_feature,fillContainer = TRUE)
WN_SKR$pred_COR
## [1] 0.9780785
Nil-Phase Synthesis and LASSO model estimation …
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 1)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 2)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 3)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 6)
Wnil_SKR_feat<-Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 7)
Wnil_SKR_feat[1]
## [[1]]
## [1] 31 387
Wnil_SKR_feat[2]
## [[1]]
## [1] 31 387
Wnil_SKR_feat[3]
## [[1]]
## [1] 31 387
datatable(data.frame(features=Wnil_SKR_feat[4]),fillContainer = TRUE)
BOOK VI-178 Figure 5.18
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 4)
## png
## 2
BOOK VI-178 Figure 5.18
Wnil_SKR<-Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Nil",Seed = 54321,lam = 1,result = 5)
Wnil_SKR$dimX
## [1] 31 378
datatable(Wnil_SKR$Coef_first9,fillContainer = TRUE)
Wnil_SKR$COR_pred_true
## [1] 0.8428065
datatable(Wnil_SKR$LASSO_Varimp,fillContainer = TRUE)
Wnil_SKR$dimLASSO
## [1] 31 3
datatable(Wnil_SKR$LASSO_part_feature,fillContainer = TRUE)
datatable(Wnil_SKR$LASSO_rename_feature,fillContainer = TRUE)
Wnil_SKR$pred_COR
## [1] 0.6384792
Swapped Feature Phases and then synthesize the data (reconstruction)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Swap",Seed = 54321,lam = 1,result = 1)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Swap",Seed = 54321,lam = 1,result = 2)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Swap",Seed = 54321,lam = 1,result = 3)
BOOK VI-178 Figure 5.18
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Swap",Seed = 54321,lam = 1,result = 4)
## png
## 2
BOOK VI-178 Figure 5.18
WS_SKR<-Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Weak",phase = "Swap",Seed = 54321,lam = 1,result = 5)
WS_SKR$dimX
## [1] 31 378
datatable(WS_SKR$Coef_first9,fillContainer = TRUE)
WS_SKR$COR_pred_true
## [1] 0.8428065
datatable(WS_SKR$LASSO_Varimp,fillContainer = TRUE)
WS_SKR$dimLASSO
## [1] 31 4
datatable(WS_SKR$LASSO_part_feature,fillContainer = TRUE)
datatable(WS_SKR$LASSO_rename_feature,fillContainer = TRUE)
WS_SKR$pred_COR
## [1] 0.7332016
Using all 386 features (378 ARIMA signatures + 8 meta-data).
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Normal",Seed = 54321,lam = 1,result = 1)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Normal",Seed = 54321,lam = 1,result = 2)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Normal",Seed = 54321,lam = 1,result = 3)
BOOK VI-178 Figure 5.19
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Normal",Seed = 54321,lam = 1,result = 4)
## png
## 2
BOOK VI-178 Figure 5.19
SN_SKR<-Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Normal",Seed = 54321,lam = 1,result = 5)
SN_SKR$dimX
## [1] 31 386
datatable(SN_SKR$Coef_first9,fillContainer = TRUE)
SN_SKR$COR_pred_true
## [1] 0.8428065
datatable(SN_SKR$LASSO_Varimp,fillContainer = TRUE)
SN_SKR$dimLASSO
## [1] 31 2
datatable(SN_SKR$LASSO_part_feature,fillContainer = TRUE)
datatable(SN_SKR$LASSO_rename_feature,fillContainer = TRUE)
SN_SKR$pred_COR
## [1] 0.9832758
Nil-Phase Synthesis and LASSO model estimation …
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 1)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 2)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 3)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 6)
png("P2_chunk32_line835.png",width = 2000,height = 2400,res = 120)
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 6)
dev.off()
## png
## 2
Snil_SKR_feat<-Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 7)
Snil_SKR_feat[1]
## [[1]]
## [1] 31 387
Snil_SKR_feat[2]
## [[1]]
## [1] 31 387
Snil_SKR_feat[3]
## [[1]]
## [1] 31 387
datatable(data.frame(features=Snil_SKR_feat[4]),fillContainer = TRUE)
BOOK VI-178 Figure 5.19
Spacetime_Kime_Rank(aggregate_arima_vector_country_ranking_df,aggregate_arima_vector_country_ranking_df$OA,signal = "Strong",phase = "Nil",Seed = 54321,lam = 1,result = 4)