
http://www.socr.umich.edu/people/dinov/2014/Fall/HS851	 	 1	
	

Scientific	Methods	for	Health	Sciences:	Applied	Inference	(HS851):	Fall	2014	
	

http://www.socr.umich.edu/people/dinov/2014/Fall/HS851		
	

Homework	5	Solutions	
	
Problem	1:	Using	the	following	survival	data		

i 1 2 3 4 5 6 7 8 9 10

Ti 2 5 8 12 15 21 25 29 30 34

Compute	by	hand	the	survival	time	estimates	S(6),	S(12),	and	the	hazard	estimate	h(12).	
	
S(t)	=	P(Ti>t)	
S(6)	=	(1/10)*(2*0+8*1)=8/10	=	0.8	
S(12)	=	(1/10)	*	(0*4+6*1)	=	6/10	=	0.6	
h(12):		p(12≤t<13	|	t>12))	=	(1/10)/(7/10)	=	0.143	
	
	
	
Problem	2:	Use	SOCR	and/or	R	to	generate	and	interpret	the	Kaplan‐Meyer	survival	curve	for	the	data	
below	(Example	5	data	in	the	SOCR	Survival	Analysis	Applet).		

time censor group 

9 1 M 

13 1 M 

13 0 M 

18 1 M 

23 1 M 

28 0 M 

31 1 M 

34 1 M 

45 0 M 

48 1 M 

161 0 M 

5 1 NM 

5 1 NM 

8 1 NM 

8 1 NM 

12 1 NM 

16 0 NM 

23 1 NM 

27 1 NM 

30 1 NM 

33 1 NM 

43 1 NM 

45 1 NM 
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SOCR	results:	
	

Samepl	Size	=	23	
	 Number	of	Censored	Cases=	5	
	 Number	of	Groups	Cases=	2	
	 Groups		=				NM	 			M	 	
	
	
	
	 Survival	Times	(Censored	Cases	Marked	+)	=		
	 9.0					13.0					13.0+					18.0					23.0					28.0+					31.0					34.0					45.0+					48.0						
	 161.0+					5.0					5.0					8.0					8.0					12.0					16.0+					23.0					27.0					30.0						
	 33.0					43.0					45.0						
	
	
	 Time	 No.	At	Risk	 Rate	 SE	of	Rate	 Upper	CI	 Lower	CI		
	
	 Group	=	NM	
	
	 5.0	 12	 .833	 .108	 1.000	 .674	
	 8.0	 10	 .667	 .136	 .933	 .477	
	 12.0	 8	 .583	 .142	 .871	 .390	
	 23.0	 6	 .486	 .148	 .802	 .294	
	 27.0	 5	 .389	 .147	 .724	 .209	
	 30.0	 4	 .292	 .139	 .638	 .133	
	 33.0	 3	 .194	 .122	 .545	 .069	
	 43.0	 2	 .097	 .092	 .460	 .021	
	 45.0	 1	 .000	 �	 �	 .000	
	
	 Group	=	M	
	
	 9.0	 11	 .909	 .087	 1.000	 .777	
	 13.0	 10	 .818	 .116	 1.000	 .648	
	 18.0	 8	 .716	 .140	 .987	 .519	
	 23.0	 7	 .614	 .153	 .924	 .408	
	 31.0	 5	 .491	 .164	 .851	 .283	
	 34.0	 4	 .368	 .163	 .762	 .178	
	 48.0	 2	 .184	 .153	 .726	 .047	
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The	results	suggest	that	the	survival	times	of	the	two	groups	are	not	significantly	different	since	the	CIs	
have	significant	overlap.		However,	on	average,	group	NM	dies	a	bit	more	quickly.		Also,	in	group	M,	we	
see	that	once	you	survive	to	time	50,	the	hazard	is	very	low.	
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In	R:	
	require('survival')	
	dataset	<‐	read.csv("C:\\Users\\	Desktop\\data.csv",	header=TRUE)	
	surv<‐survfit(Surv(time,	censor)~group,	data=dataset)	
	summary	(surv)	
	source('http://www.stat.ucla.edu/~david/teac/surv/conf‐bands.R')	
	my.cb	<‐	conf.bands(surv,	type=	'hall',	100,	600)	
	plot(surv,	lty=1:4,	col=c('red',	'green',	'blue',	'purple',	'gray',	'pink'),	xlab="Time",	ylab="Survival	
Probability",	mark.time=TRUE,	conf.int=TRUE)	
text(100,		.8,	"Group:	M:	Survival",	col='red')	
text(100,		.7,	"Group:	M:	Lower	CI",	col='green')	
text(100,		.6,	"Group:	M:	Upper	CI",	col='blue')	
text(100,		.5,	"Group:	NM:	Survival",	col='purple')	
text(100,		.4,	"Group:	NM:	Lower	CI",	col='gray')	
text(100,		.3,	"Group:	NM:	Upper	CI",	col='pink')	 	
	
#	If	we	have	additional	meta‐data	about	the	cases	(e.g.,	Gender,	Age),	then	we	can	fit		
#	linear	survival	models,	which	can	be	used	to	“predict”	survival.	Hence,	we	can	
#	compare	alternative	survival	models:	
#	survfit1	<‐	coxph(Surv(time,	status)~age+sex,	data=dataset,	subset=(etype==1),	method="breslow")	
#	survfit2	<‐	coxph(Surv(time,	status)~	sex,	data=dataset,	subset=(etype==1),	method="breslow")	

	
In	the	plot	below,	the	dashed	line	is	for	group	M	and	the	solid	line	for	group	NM.	

	



http://www.socr.umich.edu/people/dinov/2014/Fall/HS851	 	 5	
	

Problem	3:	The	multivariate	mmreg.csv	data	includes	600	observations	and	8	psychological,	academic	
and	demographic	(gender)	variables.	Use	some	dimensionality	reduction	methods	to	interrogate	the	data	
and	report	your	findings.		
	
Principal	components	analysis	
	dataset<‐read.csv('http://www.ats.ucla.edu/stat/data/mmreg.csv')	
	pca.model<‐princomp(dataset)	
	summary(pca.model)	
	
Importance	of	components:	
																													 	 Comp.1				Comp.2						 Comp.3						 Comp.4													Comp.5	
Standard	deviation								16.6603919				6.4582621	5.49497449				5.43624558					0.734981761	
Proportion	of	Variance		0.7300605					0.1097033	0.07941816				0.07772963					0.001420828	
Cumulative	Proportion		0.7300605				0.8397639		0.91918202				0.99691165					0.998332478	
																													 	 	Comp.6								 Comp.7								 	 Comp.8	
Standard	deviation												0.5931064249		 0.4338453026		 0.3065846745	
Proportion	of	Variance				0.0009252385		 0.0004950605		 0.0002472233	
Cumulative	Proportion				0.9992577163		 0.9997527767		 1.0000000000	
	
plot(pca.model)	
#	Scree	plot:	

	
This	plot	shows	that	the	first	principal	component	accounts	for	the	vast	majority	of	the	variance	in	the	
data,	and	the	first	four	account	for	almost	all	the	variance.	
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#	Biplot	of	the	first	two	PCs:	
biplot(pca.model,	xlim=c(‐0.15,0.15))	
	

	
This	biplot	shows	that	science,	reading,	math	and	writing	are	strongly	and	positively	correlated	with	each	
other	and	share	a	sign	in	the	first	PC.		However,	along	the	second	PC,	writing	and	science	are	negatively	
associated.		Science	and	reading	retain	a	weaker	positive	association,	and	math	contributes	little	to	
differentiation	in	PC2.	
	
Factor	analysis	in	R	
	#	dataset	can	be	a	raw	data	matrix	or	a	covariance	matrix.	
	fit	<‐	factanal(dataset,	3,	rotation="varimax")			
	print(fit,	digits=2,	cutoff=.3,	sort=TRUE)	
	

Call:	
factanal(x	=	dat,	factors	=	3,	rotation	=	"varimax")	
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Uniquenesses:	
locus_of_control					self_concept							motivation													read												write		
												0.73													0.65													0.65													0.29													0.30		
												math										science											female		
												0.34													0.32													0.36		
	
Loadings:	
																		 	 Factor1		 Factor2		 Factor3	
read														 	 	0.83																			
write														 	 0.76						 0.33											
math														 	 	0.81																			
science											 	 	0.81																			
female																	 0.80											
self_concept																							 		 0.57			
motivation																									 		 0.55			
locus_of_control		 	0.39													 	 	 0.31			
	
												
	

				 	Factor1	Factor2	Factor3	
SS	loadings											2.75				0.83				0.77	
Proportion	Var				0.34				0.10				0.10	
Cumulative	Var				0.34				0.45				0.54	
	
Test	of	the	hypothesis	that	3	factors	are	sufficient.	
The	chi	square	statistic	is	11.15	on	7	degrees	of	freedom.	
The	p‐value	is	0.132		

	
	#	plot	factor	1	by	factor	2		
	load	<‐	fit$loadings[,1:2]		
	plot(load,type="n")	#	set	up	plot		
	text(load,labels=names(dataset),cex=.7)	#	add	variable	names	
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Similarly	to	the	results	seen	in	the	PCA	biplot,	the	first	axis	is	strongly	driven	by	a	positive	correlation	
among	writing,	math,	reading	and	science.		These	variables	are	negatively	correlated	with	being	female	
and	self	concept.		On	the	second	axis,	we	see	a	positive	association	between	female	and	writing	and	
negative	relationships	between	female	and	science	and	female	and	self‐concept.	
	
	
	
	
	
	library(nFactors)	
	ev	<‐	eigen(cor(dataset))	#	get	eigenvalues	
>	ap	<‐	parallel(subject=nrow(dataset),var=ncol(dataset),	rep=100,cent=.05)	
>	nS	<‐	nScree(x=ev$values,	aparallel=ap$eigen$qevpea)	
>	plotnScree(nS)		
	

	
Similar	to	the	scree	plot	from	PCA,	we	see	the	first	factor	has	a	much	larger	eigenvalue	than	the	following	
ones	and	accounts	for	more	of	the	variance	in	the	data.	
	
	
Problem	4:	Use	the	Gazi	University	Student	Evaluation	Data	Set	to	compute	two	test	reliability	measures	
(use	only	the	responses	in	Q1‐Q28).	Intepret	the	results	and	discuss	your	findings	in	the	study‐specific	
context.	For	extra	credit	you	can	think	about	interpreting	the	impact	of	the	course	descriptive	meta‐data	
(Repeat,	Attendance,	Difficulty)	and	their	potential	impact	on	student	responses.		
	
	require(psy)	
	dataset	<‐	read.csv("C:\\Users\\Desktop\\gazi.csv",	header=TRUE)	
	dataset	<‐	dataset	[,‐c(1:5)]		
	c.alpha<‐cronbach(dataset)	
	c.alpha	

$sample.size	
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[1]	5820	
$number.of.items	
[1]	28	
$alpha	
[1]	0.9887934	

	
A	Chronbach’s	alpha	value	of	0.99	is	very	high,	and	suggests	high	internal	consistency.	
	
library("psych"	)	
t.dataset	<‐as.data.frame(t(dataset	[c(1:20),]))	#	using	first	20	students	(raters)	
c.kappa<‐cohen.kappa(t.dataset)	
kappam.fleiss(t.dataset)	
	
When	the	response	variable	is	continuous,	the	intra‐class	correlation	coefficient	may	be	useful	for	
instrument	reliability.	Either	only	subjects/topics	can	be	considered	as	random	effects	("oneway"	model,	
default)	or	both	subjects	and	raters	are	considered	as	randomly	chosen	("twoway"	model).	When	
differences	in	raters’	mean	ratings	are	of	interest,	inter‐rater	"agreement"	instead	of	"consistency"	
(default)	type	should	be	specified.		
	
library(irr)	
icc(dataset,	model="twoway",	type="agreement")	
							Single	Score	Intra‐class	Correlation	(ICC)	

			Model:	twoway		
			Type	:	agreement		
	
			Subjects	=	28		
			Raters	=	20		
			ICC(A,1)	=	‐0.00189	
	
			F‐Test,	H0:	r0	=	0	;	H1:	r0	>	0		
			F(27,5.19)	=	0.34	,	p	=	0.971		
	
	95%‐Confidence	Interval	for	ICC	Population	Values:	‐0.003	<	ICC	<	0	


