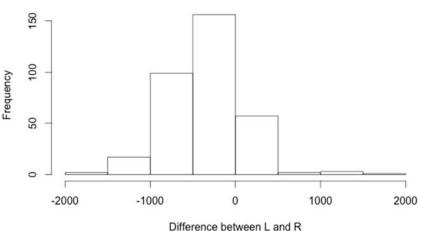
Scientific Methods for Health Sciences: Applied Inference (HS851): Fall 2014


http://www.socr.umich.edu/people/dinov/2014/Fall/HS851

Homework 4 Solutions

Use the <u>SOCR Neuroimaging dataset</u> of visceral pain, irritable bowel syndrome, ulcerative colitis, and Crohn's disease.

Problem 1: Is there evidence of hippocampal volume asymmetry in the IBS cohort? Formulate an appropriate research hypothesis, identify a suitable statistical technique, apply the corresponding software tool, and report your findings.

H₀: The mean difference between right and left hippocampal volumes is equal to 0. H_A: The mean difference between right and left hippocampal volumes is not 0.

Symmetry of hippocampal volumes

A histogram of the difference between the two data sets reveal that the right hippocampus is a bit larger on average. The differences appear relatively normally distributed. We apply a paired t-test to assess our hypothesis.

We find a t-value of -14.74 with 336 df, which results in a p-value of less than 2.2E-16. We therefore reject the null hypothesis and conclude that there is significant evidence to suggest that the right and left hippocampi have different volumes.

Problem 2: Assume the gender distributions of the participants in this study accurately represents the 4 cohorts (Normals, IBS, Ulcerative Colitis and Crohn's disease). Let's say we wish to compare the proportions of males in the Normals and IBS groups. Use the <u>Methods of Moments</u> to compute estimates (p₁ and p₂) of the probabilities that a randomly selected male is from the asymptomatic normal control group (p₁) and a randomly selected male is from the IBS control group (p₂). Once you find the point estimates (p₁ and p₂), perform a statistical test to assess the differences between the proportions of males in the Normals and IBS groups. Note that you need to invert the conditioning: p'₁=P(male|NC), and p'₂=P(male|IBS). What is the <u>confidence interval</u> of the difference p'₁ - p'₂?

	Male	Female	Totals
Normal	27	194	221
IBS	24	83	107
Totals	51	277	328

H₀ : The difference between the proportions of males in the normal and control groups equals 0.

H_A : The difference between the proportions of males in the normal and control groups is not equal to 0.

 $\alpha = 0.05$

Assume a binomial model, X~Bin(n,p), where n is the number of trials (i.e., total number of males) and p is the number of successes (i.e., asymptomatic for p1 and symptomatic for p2).

$$p_1 = P(NC|male) = \frac{27}{51} = 0.53$$
$$p_2 = P(IBS|male) = \frac{24}{51} = 0.47$$

E[X] = n*p n*p1 = 27 n*p2 = 24 n=51 p1=27/51 = 0.53p2=24/51 = 0.47

We cause the inversion of conditioning to compute p'_1 and p'_2 (or we can compute it directly from the given data in the table).

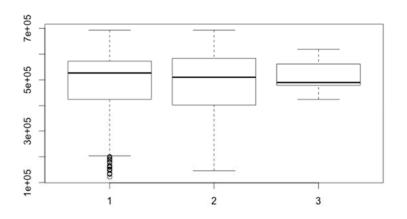
$$p'_{1} = P(male|NC) = P(NC|male) \frac{P(male)}{P(NC)} = \frac{27}{51} \frac{51/328}{221/328} = \frac{27}{51} \frac{51}{221} = 0.1221719,$$

$$p'_{2} = P(male|IBS) = P(IBS|male) \frac{P(male)}{P(IBS)} = \frac{24}{51} \frac{51/328}{107/328} = \frac{24}{51} \frac{51}{107} = 0.2242991.$$

 p'_1 = Proportion of males in normal group: 27/221 = 0.122 p'_2 = Proportion of males in IBS group: 24/107 = 0.224 Difference in proportions: (27/221)-(24/107) = -0.102 n1=248

http://www.socr.umich.edu/people/dinov/2014/Fall/HS851

n2=131 SE(p'1-p'2) = (sqrt(p'1*(1-p'1)/n1 + (p'2*(1-p'2)/n2)) Z-score: Zo = -0.102 / SE(p'1-p'2) = -2.22 P(Z<Zo) = 0.0132 Since 0.0132*2=0.0264<0.05


The p-value is less than α ; therefore, we reject the null hypothesis and conclude that there is a significant difference between the proportion of males in the IBS group and that in the control group.

95% CI: [(p'1-p'2)-1.96*SE; (p'1-p'2)+1.96*SE)]= [-0.01207; -0.19218]

This interval does not include 0, so our confidence interval agrees with our test that the difference is significant.

Problem 3: Use the <u>SOCR Fligner-Killeen test</u> to investigate if the variances of the white matter volume (WMV) between the 3 cohorts (Normals, IBS, Ulcerative Colitis) are significantly different. Why is this important? Repeat this analysis looking for differences in the variability of the gray matter volume (GMV) in the controls group between genders. Elaborate on your findings.

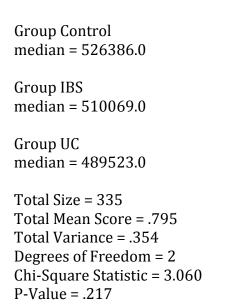
It is important to know whether variances among groups are similar because many other statistical tests (e.g., ANOVA) rely on the assumption that variances among groups are equal.

WMV in 3 groups

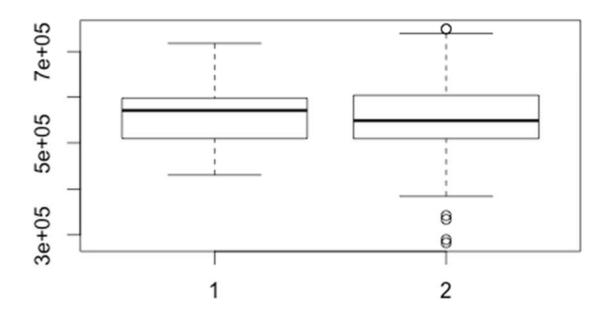
Group 1: Controls Group 2: IBS Group 3: Ulcerative colitis

R code: fligner.test(list(wmv.1, wmv.2, wmv.3))

Fligner-Killeen test of homogeneity of variances


data: list(wmv.1, wmv.2, wmv.3) Fligner-Killeen:med chi-squared = 3.0595, df = 2, p-value = 0.2166

The high p-value (0.2166) suggests that the variances in WMV among the three groups are not significantly different.


The parallel results from SOCR:

ULATE	EXAMPLE 1	EXAMPLE 2	2 EXA	MPLE 3 E	XAMPLE 4	CLEAR				
						D	ATA	APPING	RESULT]
Control	IBS	UC	C4	C5	C6	C7	C8	C9	C10	C11
58120		423992	04	0.5	co	07	0	C 9	010	CI.
58020		506513								
45947		478837								
47787		617988								
539330										
		616133								
56350		478254								
21367		489523								
657803										
57235										
51006										
63982										
63376										
53136										
292502										
46463										
52916										
49591										
54292										
50651										
58851										
54569										
533744										
34189										
55680										
52638										
51549										
55577										
46771										
565614	4 488428									

CALCULATE EXAMPLE 1 EXAMPLE 2 EXAMPLE 3	EXAMPLE 4 CLEAR		
	DATA MAPPING RESULT		
C4	SELECT AT LEAST TWO GROUPS:	Control	
C5	ADD	IBS	
C6	REMOVE	UC	
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			
C15			
C16			

GMV among groups

> fligner.test(list(gmv.1, gmv.2))

Fligner-Killeen test of homogeneity of variances

data: list(gmv.1, gmv.2)

http://www.socr.umich.edu/people/dinov/2014/Fall/HS851

The high p-value (0.5987) suggests that the variances in GMV among the two groups are not significantly different.

The parallel analysis and results in SOCR:

CALCULA	TE EXAN	IPLE 1	EXAMPLE 2	EXAMPLE 3	EXAMP	LE 4	CLEAR			
							DATA	MAPPING	RESULT	
males	females	C3	C4	C5	C6	C7	C8	C9	C10	C11
572172	673617									
585671	608842									
583833	566926									
516133	584741									
570818	630158									
512296	718007									
590993	605422									
583785	509249									
434763	508228									
430577	564193									
672234	582039									
453114	384022									
484690	536144									
528234	573103									
584741	476284									
718007	493260									
505422	506546									
564193	588193									
582039	569848									
474696	536474									
504467	566345									
548149	683785									
506546	548471									
569848	434763									
488280	664602									
	598462									
558783	518476									
537182	616013									
592302	560434									

63	SELECT AT LEAST TWO GROUPS:	males	
C4	ADD	females	
C5	REMOVE		
C6			
C7			
C8			
C9			
C10			
C11			
212			
213			
C14			
C15			
		L. S.	

Results:

Group C1 median = 553466.0

Group C2 median = 548471.0

Total Size = 337 Total Mean Score = .795 Total Variance = .354 Degrees of Freedom = 1 Chi-Square Statistic = .277 P-Value = .599 **Problem 4**: Complete the following table, where *patients* indicates all study participant except the asymptomatic controls.

Groups	Patients	Controls	Total
Female	89	194	283
Male	27	27	54
Total	221	116	337

Compute a <u>point estimate and a 95% CI for the Odds Ratio</u> of controls relative to gender. Next, apply the χ^2 association test to investigate for association between participants' gender and diagnosis.

Odds of being female given being a patient compared to the odds of being female given being a control. OR: (89/27) / (194 / 27) = 0.46 log(OR) = -0.78SE(log(OR)) = sqrt(1/89 + 1/27 + 1/194 + 1/27) CI(log(OR)) = [log(OR) - 1.96 * SE, log(OR)+1.96*SE] = [-1.37, -0.19] CI(OR) = exp (CI(log(OR)) = [0.25, 0.83]

The 95% confidence interval does not include 1, so we can conclude that the odds of being female is higher among controls than among patients.

Chi-squared test > chisq.test(tab, correct=F)

Pearson's Chi-squared test

data: tab X-squared = 6.9136, df = 1, p-value = 0.008554

The low p-value of 0.009 suggests that the distribution of gender is not independent of disease status.

The parallel results from SOCR:

CALCULATE CLEAR			
		INPUT RESULT	
	Select Si	gnificance Level: 0.	05 ‡
	Select	Number of Rows: 2	+
	Select N	umber of Columns:	2 \$
		Patients	Controls
	Female	89	194
	Male	27	27

Results of Chi-Square Test for Independent or Homogeneity

Number of Rows = 2 Number of Columns = 2

	Patien	ts	Contro	ols	Row Total				
Femal	e	89.0 ((97.412)	194.0 (185.5	588)	283		
Male	27.0 (18.588	3)	27.0 (35.412)	54			
Col To	tal	116	221	337					
Degrees of Freedom = 1									
Pearso	Pearson Chi-Square Statistics = 6.914								

P-Value = 0.008554158887597696

Appendix: R code

setwd('~/hw4_851') dat<-read.csv('hw4.csv')

mean(dat\$L_hippocampus)
mean(dat\$R_hippocampus)

hippo_t.test <- t.test(x=dat\$L_hippocampus, y=dat\$R_hippocampus, paired=T) hippo_t.test

```
n2=24+107
zscore = (p1-p2 / (sqrt( p1*(1-p1)/n1 + (p2*(1-p2)/n2)))
pnorm(zscore, 0, 1)
conf.int.95 <- c(
(p1-p2)-1.96*(sqrt( p1*(1-p1)/n1 + (p2*(1-p2)/n2))),
(p1-p2)+1.96*(sqrt( p1*(1-p1)/n1 + (p2*(1-p2)/n2)))
)
```

```
datsub<-subset(dat, dat$Group!=5)
datsub$Group<-factor(datsub$Group)
boxplot(WMV~as.factor(Group), data=datsub)</pre>
```

```
fligner.test(list(wmv.1, wmv.2, wmv.3))
```

gmv.1<-dat\$GMV[dat\$Group==1] gmv.2<-dat\$GMV[dat\$Group==2] gmv.3<-dat\$GMV[dat\$Group==3]

datsub<-subset(dat, dat\$Group!=5)
datsub\$Group<-factor(datsub\$Group)
boxplot(GMV~as.factor(Group), data=datsub)</pre>

fligner.test(list(gmv.1, gmv.2, gmv.3))

```
OR <- (89*27)/(194*27)
```

http://www.socr.umich.edu/people/dinov/2014/Fall/HS851

```
log(OR)
se.log.or <- sqrt(sum(1/c(tab)))
ci.log.or<- c(log(OR)-1.96*se.log.or, log(OR)+1.96*se.log.or)
exp(ci.log.or)</pre>
```

```
chisq.test(tab, correct=F)
```