SOCR ≫ TCIU Website ≫ TCIU GitHub ≫

# Get this figure: fig <- get_figure("MattSundquist", 4064)
# Get this figure's data: data <- get_figure("MattSundquist", 4064)$data
# Add data to this figure: p <- add_trace(p, x=c(4, 5), y=c(4, 5), kwargs=list(filename="Klein bottle", fileopt="extend"))
# Get y data of first trace: y1 <- get_figure("MattSundquist", 4064)$data[[1]]$y

library(plotly)

1 Structured Big Data Analytics Case-Study

Next, we will look at another interesting example of a large structured tabular dataset. The goal remains the same - examine the effects of indexing complex data only using kime-order (time) and comparing the data representations as well as the subsequent data analytics. In this case-study, we will use the UK Biobank (UKBB) data.

A previous investigation Predictive Big Data Analytics using the UK Biobank Data, based on \(7,614\) imaging, clinical, and phenotypic features and neuroimaging data of \(9,914\) UKBB subjects reported the twenty most salient derived imaging biomarkers. By jointly representing and modeling the significant clinical and demographic variables along with specific salient neuroimaging features, the researchers predicted the presence and progression of depression and mental health of participating volunteers. We will explore the effects of kime-direction on the findings based on the same data and methods. For ease of demonstration, efficient calculations, and direct interpretation, we start by transforming the data into a tighter computable object of dimensions \(9,914\times 107\).

UKBB_data <- get(load("E:/Ivo.dir/Research/UMichigan/Publications_Books/2019/DataScience_Book_Value_Uncertainty_Kime_2019/other/UKBB_data_cluster_label.Rdata")) 
# str(UKBB_data)
UKBB_Colnames <- colnames(UKBB_data); View(UKBB_Colnames); dim(UKBB_data)   # 9914 7615
## [1] 9914 7615
# Extract the top-50 derived NI biomarkers (data_summary_cluster_2.xlsx), per
# https://drive.google.com/drive/folders/1SdAtefp_taabNL70JvwJZSexTkzXiEKD 
top50_NI_Biomarkers <- c("lh_BA_exvivo_area__lh_WhiteSurfArea_area", "rh_BA_exvivo_area__rh_WhiteSurfArea_area", "rh_aparc.a2009s_area__rh_WhiteSurfArea_area", "rh_aparc_area__rh_WhiteSurfArea_area", "lh_aparc_area__lh_WhiteSurfArea_area", "lh_aparc.a2009s_area__lh_WhiteSurfArea_area", "aseg__SupraTentorialVol", "aseg__SupraTentorialVolNotVent", "aseg__SupraTentorialVolNotVentVox", "aseg__BrainSegVol", "aseg__BrainSegVolNotVentSurf", "aseg__BrainSegVolNotVent", "aseg__CortexVol", "aseg__rhCortexVol", "aseg__lhCortexVol", "aseg__TotalGrayVol", "aseg__MaskVol", "rh_aparc.DKTatlas_area__rh_superiortemporal_area", "rh_aparc.DKTatlas_area__rh_superiorfrontal_area", "lh_aparc.DKTatlas_area__lh_superiorfrontal_area", "lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area", "lh_aparc.DKTatlas_area__lh_superiortemporal_area", "aseg__EstimatedTotalIntraCranialVol", "lh_aparc_area__lh_lateralorbitofrontal_area", "rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area", "lh_aparc_area__lh_superiorfrontal_area", "rh_aparc_area__rh_superiortemporal_area", "rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area", "rh_aparc_area__rh_superiorfrontal_area", "lh_aparc_area__lh_rostralmiddlefrontal_area", "wmparc__wm.lh.lateralorbitofrontal", "wmparc__wm.lh.insula", "rh_aparc_area__rh_medialorbitofrontal_area", "lh_BA_exvivo_area__lh_BA3b_exvivo_area", "lh_aparc.DKTatlas_area__lh_postcentral_area", "lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume", "lh_aparc.DKTatlas_area__lh_insula_area", "aseg__SubCortGrayVol", "lh_aparc.a2009s_area__lh_G_orbital_area", "lh_aparc_area__lh_superiortemporal_area", "rh_aparc.DKTatlas_area__rh_insula_area", "lh_aparc.DKTatlas_area__lh_precentral_area", "lh_aparc.pial_area__lh_lateralorbitofrontal_area", "lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area", "lh_aparc_area__lh_postcentral_area", "lh_aparc.pial_area__lh_superiorfrontal_area", "rh_aparc_area__rh_rostralmiddlefrontal_area", "wmparc__wm.lh.superiortemporal", "lh_aparc.pial_area__lh_rostralmiddlefrontal_area", "rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume")

# Extract the main clinical features (binary/dichotomous and categorical/polytomous)
#### binary
top25_BinaryClinical_Biomarkers <- c("X1200.0.0", "X1200.2.0", "X1170.0.0", "X1190.2.0", "X1170.2.0", "X2080.0.0", "X6138.2.2", "X20117.0.0", "X6138.0.2", "X2877.0.0", "X20117.2.0", "X2877.2.0", "X1190.0.0", "X4968.2.0", "X1249.2.0", "X1190.1.0", "X1170.1.0", "X2080.2.0", "X4292.2.0", "X2050.0.0", "X1628.0.0", "X1200.1.0", "X20018.2.0", "X4292.0.0", "X3446.0.0")
#### polytomous
top31_PolytomousClinical_Biomarkers <- c("X31.0.0", "X22001.0.0", "X1950.0.0", "X1950.2.0", "X1980.0.0", "X2040.2.0", "X1980.2.0", "X2030.0.0", "X2090.0.0", "X2040.0.0", "X1618.2.0", "X1618.0.0", "X1210.0.0", "X2030.2.0", "X2000.0.0", "X1930.0.0", "X2090.2.0", "X2000.2.0", "X1210.2.0", "X1618.1.0", "X4653.2.0", "X1970.2.0", "X1970.0.0", "X1980.1.0", "X1930.2.0", "X4598.2.0", "X4598.0.0", "X4653.0.0", "X2090.1.0", "X2040.1.0", "X4631.2.0")

# Extract derived computed phenotype 
derivedComputedPhenotype <- UKBB_Colnames[length(UKBB_Colnames)]

# Construct the Computable data object including all salient predictors and derived cluster phenotype
ColNameList <- c(top50_NI_Biomarkers, top25_BinaryClinical_Biomarkers, 
                     top31_PolytomousClinical_Biomarkers, derivedComputedPhenotype); length(ColNameList)
## [1] 107
col.index <- which(colnames(UKBB_data) %in% ColNameList); length(col.index)
## [1] 107
tight107_UKBB_data <- UKBB_data[ , col.index]; dim(tight107_UKBB_data)
## [1] 9914  107
## View(tight107_UKBB_data[1:10, ])   # Confirm the tight data object organization 

We can investigate the effects of the kime-phase on the resulting data analytic inference obtained using the UKBB data.

library(caret)
## Warning: package 'caret' was built under R version 4.1.2
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.1.2
################################
#  1. First deal with the missing values  # summary(tight107_UKBB_data)
##### "mi" imputation - LONG
#library(mi) # use pmm (predictive mean matching) imputation method for the missing variables.
#mdf <- missing_data.frame(tight107_UKBB_data)
#show(mdf)   # ; head(mdf); dim(mdf)
#options(mc.cores = 4)
#imputations <- mi(mdf, n.iter=4, n.chains=1, verbose=T)
#imp.data.frames <- complete(imputations, 1)
#imp_tight107_UKBB_data <- imp.data.frames[[1]]

# split-off the computed phenotype (avoid manipulationg hte outcome that will be predicted during analysis phase
colnames(tight107_UKBB_data)[length(tight107_UKBB_data)] <- "cluster_2_cluster"
colnames(tight107_UKBB_data)[length(tight107_UKBB_data)]   # fix the problem with $ in variable name
## [1] "cluster_2_cluster"
y_pheno  <- tight107_UKBB_data[ , length(tight107_UKBB_data)]
tight106_UKBB_data <- tight107_UKBB_data[, -length(tight107_UKBB_data)]; dim(tight106_UKBB_data)
## [1] 9914  106
# MICE imputation (With parallel core computing)
# all predictors with absolute correlation over 0.4 AND at least 30% usable cases
library(mice)
## Warning: package 'mice' was built under R version 4.1.2
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
library(foreach)
library(doParallel)
## Loading required package: iterators
## Loading required package: parallel
# set-up local parallel cluster
number_cores <- detectCores() - 2
clustUKBB <- makeCluster(number_cores)
clusterSetRNGStream(clustUKBB, 1234)
registerDoParallel(clustUKBB)

imp_tight106_UKBB_data <-
  foreach(no = 1:number_cores, 
          .combine = ibind, 
          .export = "tight106_UKBB_data",
          .packages = "mice") %dopar%
{
  mice(tight106_UKBB_data, m=2,maxit=3, printFlag=T, seed=1234, method = 'cart')
}
## Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already exporting
## variable(s): tight106_UKBB_data
str(imp_tight106_UKBB_data)
## List of 21
##  $ data           :'data.frame': 9914 obs. of  106 variables:
##   ..$ lh_aparc_area__lh_lateralorbitofrontal_area             : int [1:9914] 2350 2646 2431 2124 2851 2741 2907 2611 2626 2602 ...
##   ..$ lh_aparc_area__lh_postcentral_area                      : int [1:9914] 3819 4123 4201 3712 4807 3801 4269 3736 4376 3877 ...
##   ..$ lh_aparc_area__lh_rostralmiddlefrontal_area             : int [1:9914] 5114 4990 4753 4841 5530 5673 6421 5161 5104 5117 ...
##   ..$ lh_aparc_area__lh_superiorfrontal_area                  : int [1:9914] 6282 6679 6955 6705 7688 6959 7990 6382 6095 6967 ...
##   ..$ lh_aparc_area__lh_superiortemporal_area                 : int [1:9914] 3648 3604 4016 3368 3703 3920 4819 3725 4155 3949 ...
##   ..$ lh_aparc_area__lh_WhiteSurfArea_area                    : num [1:9914] 75300 85056 79993 79557 87467 ...
##   ..$ lh_aparc.a2009s_area__lh_G_orbital_area                 : int [1:9914] 1336 1621 1496 1270 1838 1653 1770 1649 1596 1582 ...
##   ..$ lh_aparc.a2009s_area__lh_WhiteSurfArea_area             : num [1:9914] 75311 85083 80002 79593 87479 ...
##   ..$ lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area    : int [1:9914] 2668 2899 2648 2450 3193 3165 3215 2865 2888 2935 ...
##   ..$ lh_aparc.DKTatlas_area__lh_postcentral_area             : int [1:9914] 4234 4671 4782 4229 5476 4379 4844 4319 5047 4333 ...
##   ..$ lh_aparc.DKTatlas_area__lh_precentral_area              : int [1:9914] 4114 5242 4066 4589 4717 4953 5348 4530 4408 4441 ...
##   ..$ lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area    : int [1:9914] 3694 3639 3271 3497 4006 4202 4655 3873 3507 3647 ...
##   ..$ lh_aparc.DKTatlas_area__lh_superiorfrontal_area         : int [1:9914] 6804 7010 7467 7326 8026 7337 8505 6697 6824 7524 ...
##   ..$ lh_aparc.DKTatlas_area__lh_superiortemporal_area        : int [1:9914] 4925 4852 5154 4555 4910 5125 6033 4849 5272 5213 ...
##   ..$ lh_aparc.DKTatlas_area__lh_insula_area                  : int [1:9914] 1893 1962 2075 1849 2100 1624 2208 1788 1911 1900 ...
##   ..$ lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume: int [1:9914] 8109 9048 8004 7191 9712 9537 8814 8080 9332 8922 ...
##   ..$ lh_aparc.pial_area__lh_lateralorbitofrontal_area        : int [1:9914] 2864 3199 2613 2402 3518 3255 3325 2852 2980 3125 ...
##   ..$ lh_aparc.pial_area__lh_rostralmiddlefrontal_area        : int [1:9914] 6190 6032 5367 5747 6053 7007 7232 6043 5891 6683 ...
##   ..$ lh_aparc.pial_area__lh_superiorfrontal_area             : int [1:9914] 7988 8299 8443 8000 9050 8397 9127 7536 7270 8741 ...
##   ..$ lh_BA_exvivo_area__lh_BA3b_exvivo_area                  : int [1:9914] 1477 1634 1519 1433 1631 1520 1565 1438 1568 1506 ...
##   ..$ lh_BA_exvivo_area__lh_WhiteSurfArea_area                : num [1:9914] 80694 90563 85253 85222 92610 ...
##   ..$ rh_aparc_area__rh_medialorbitofrontal_area              : int [1:9914] 1706 1729 1783 1888 2124 2032 2008 2000 1734 1886 ...
##   ..$ rh_aparc_area__rh_rostralmiddlefrontal_area             : int [1:9914] 4957 5040 4820 5546 5664 6033 6232 5594 5553 5566 ...
##   ..$ rh_aparc_area__rh_superiorfrontal_area                  : int [1:9914] 5866 6505 6709 6422 7271 6404 7039 5688 6317 6288 ...
##   ..$ rh_aparc_area__rh_superiortemporal_area                 : int [1:9914] 3442 3704 3280 3624 3431 3580 4203 3505 3806 3282 ...
##   ..$ rh_aparc_area__rh_WhiteSurfArea_area                    : num [1:9914] 75996 83699 80262 80435 86398 ...
##   ..$ rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area            : int [1:9914] 1702 1602 1841 1966 2161 1884 2313 1904 1942 1906 ...
##   ..$ rh_aparc.a2009s_area__rh_WhiteSurfArea_area             : num [1:9914] 76001 83753 80267 80447 86413 ...
##   ..$ rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area    : int [1:9914] 2309 2678 2493 2471 3019 3004 3063 2734 3089 2830 ...
##   ..$ rh_aparc.DKTatlas_area__rh_superiorfrontal_area         : int [1:9914] 7542 8166 8588 8281 9155 8314 8955 7646 8021 8354 ...
##   ..$ rh_aparc.DKTatlas_area__rh_superiortemporal_area        : int [1:9914] 4388 4741 4304 4644 4687 4641 5424 4627 4844 4285 ...
##   ..$ rh_aparc.DKTatlas_area__rh_insula_area                  : int [1:9914] 2014 2019 2112 1981 2077 1816 2237 1798 2075 1900 ...
##   ..$ rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume: int [1:9914] 7447 7830 7859 7614 9241 8685 8212 7782 9114 9287 ...
##   ..$ rh_BA_exvivo_area__rh_WhiteSurfArea_area                : num [1:9914] 81191 89124 85315 86163 91575 ...
##   ..$ aseg__BrainSegVol                                       : int [1:9914] 1103218 1121279 1053890 1119779 1112684 1169717 1226114 1089037 1148694 1087378 ...
##   ..$ aseg__BrainSegVolNotVent                                : int [1:9914] 1063264 1070975 1028244 1065158 1076242 1105100 1205772 1062760 1121631 1063590 ...
##   ..$ aseg__BrainSegVolNotVentSurf                            : num [1:9914] 1062099 1069818 1027862 1064310 1075692 ...
##   ..$ aseg__lhCortexVol                                       : num [1:9914] 228606 230880 209613 222804 230371 ...
##   ..$ aseg__rhCortexVol                                       : num [1:9914] 230274 209291 210212 227798 232323 ...
##   ..$ aseg__CortexVol                                         : num [1:9914] 458879 440171 419825 450602 462694 ...
##   ..$ aseg__SubCortGrayVol                                    : int [1:9914] 50800 50573 51371 54863 48979 52781 56751 50079 55256 50591 ...
##   ..$ aseg__TotalGrayVol                                      : num [1:9914] 613718 624125 570302 601374 602811 ...
##   ..$ aseg__SupraTentorialVol                                 : num [1:9914] 974971 958416 932012 999701 994856 ...
##   ..$ aseg__SupraTentorialVolNotVent                          : num [1:9914] 939417 912893 909538 949265 962710 ...
##   ..$ aseg__SupraTentorialVolNotVentVox                       : int [1:9914] 936915 909761 906943 945946 960353 959397 1063889 924416 980829 930046 ...
##   ..$ aseg__MaskVol                                           : int [1:9914] 1552381 1631227 1460936 1512763 1532661 1610154 1632023 1514226 1630776 1514167 ...
##   ..$ aseg__EstimatedTotalIntraCranialVol                     : num [1:9914] 1450837 1435991 1428100 1434827 1365251 ...
##   ..$ wmparc__wm.lh.lateralorbitofrontal                      : num [1:9914] 6157 6389 6138 6211 7170 ...
##   ..$ wmparc__wm.lh.superiortemporal                          : num [1:9914] 7972 7137 8994 7371 7205 ...
##   ..$ wmparc__wm.lh.insula                                    : num [1:9914] 9878 9077 10518 9782 10755 ...
##   ..$ X31.0.0                                                 : int [1:9914] 0 1 0 0 1 1 0 0 1 0 ...
##   ..$ X1170.0.0                                               : int [1:9914] 3 3 2 3 3 3 3 3 3 2 ...
##   ..$ X1170.1.0                                               : int [1:9914] NA NA NA NA 3 3 4 NA NA NA ...
##   ..$ X1170.2.0                                               : int [1:9914] 2 3 2 3 3 3 4 4 3 2 ...
##   ..$ X1190.0.0                                               : int [1:9914] 1 1 1 2 1 2 2 1 2 1 ...
##   ..$ X1190.1.0                                               : int [1:9914] NA NA NA NA 1 2 1 NA NA NA ...
##   ..$ X1190.2.0                                               : int [1:9914] 2 1 2 2 1 2 1 1 2 1 ...
##   ..$ X1200.0.0                                               : int [1:9914] 3 2 2 2 2 3 2 2 2 2 ...
##   ..$ X1200.1.0                                               : int [1:9914] NA NA NA NA 1 2 2 NA NA NA ...
##   ..$ X1200.2.0                                               : int [1:9914] 3 2 3 3 2 3 3 2 2 2 ...
##   ..$ X1210.0.0                                               : int [1:9914] NA 1 2 2 1 1 2 2 2 2 ...
##   ..$ X1210.2.0                                               : int [1:9914] 1 1 2 NA 2 1 2 2 2 2 ...
##   ..$ X1249.2.0                                               : int [1:9914] 4 1 4 2 1 4 2 1 3 4 ...
##   ..$ X1618.0.0                                               : int [1:9914] 1 0 1 0 1 1 1 NA NA 1 ...
##   ..$ X1618.1.0                                               : int [1:9914] NA NA NA NA NA 1 1 NA NA NA ...
##   ..$ X1618.2.0                                               : int [1:9914] 1 0 NA NA NA 1 1 0 NA 1 ...
##   ..$ X1628.0.0                                               : int [1:9914] 2 2 2 3 1 2 3 2 1 3 ...
##   ..$ X1930.0.0                                               : int [1:9914] 1 1 0 1 1 0 1 0 1 0 ...
##   ..$ X1930.2.0                                               : int [1:9914] 1 0 0 1 NA 0 1 0 1 0 ...
##   ..$ X1950.0.0                                               : int [1:9914] 0 1 1 0 1 0 NA 0 1 1 ...
##   ..$ X1950.2.0                                               : int [1:9914] NA 1 1 1 1 0 NA 0 1 0 ...
##   ..$ X1970.0.0                                               : int [1:9914] 0 0 0 1 1 0 0 0 0 0 ...
##   ..$ X1970.2.0                                               : int [1:9914] 0 0 0 1 0 0 0 0 0 0 ...
##   ..$ X1980.0.0                                               : int [1:9914] 1 0 NA 1 1 0 1 0 1 1 ...
##   ..$ X1980.1.0                                               : int [1:9914] NA NA NA NA 1 0 1 NA NA NA ...
##   ..$ X1980.2.0                                               : int [1:9914] 1 0 1 1 1 0 1 0 1 1 ...
##   ..$ X2000.0.0                                               : int [1:9914] 1 1 0 1 1 0 NA NA 1 1 ...
##   ..$ X2000.2.0                                               : int [1:9914] 1 1 0 1 1 0 NA 1 1 1 ...
##   ..$ X2030.0.0                                               : int [1:9914] 1 0 0 1 1 0 0 0 0 0 ...
##   ..$ X2030.2.0                                               : int [1:9914] 0 0 1 1 0 0 0 0 0 0 ...
##   ..$ X2040.0.0                                               : int [1:9914] 0 1 NA 0 1 0 1 1 1 0 ...
##   ..$ X2040.1.0                                               : int [1:9914] NA NA NA NA 0 0 0 NA NA NA ...
##   ..$ X2040.2.0                                               : int [1:9914] 1 1 0 0 0 0 1 1 1 0 ...
##   ..$ X2050.0.0                                               : int [1:9914] 3 1 4 2 2 1 NA 1 2 1 ...
##   ..$ X2080.0.0                                               : int [1:9914] 2 1 2 2 2 3 1 1 1 2 ...
##   ..$ X2080.2.0                                               : int [1:9914] 2 1 2 2 2 3 NA 1 2 1 ...
##   ..$ X2090.0.0                                               : int [1:9914] 1 0 1 1 1 0 0 0 1 0 ...
##   ..$ X2090.1.0                                               : int [1:9914] NA NA NA NA 0 0 0 NA NA NA ...
##   ..$ X2090.2.0                                               : int [1:9914] 1 0 1 1 0 0 0 0 0 0 ...
##   ..$ X2877.0.0                                               : int [1:9914] NA 1 NA NA 1 NA NA 1 NA NA ...
##   ..$ X2877.2.0                                               : int [1:9914] NA 1 NA NA 1 NA NA 1 NA NA ...
##   ..$ X3446.0.0                                               : int [1:9914] NA NA NA NA NA NA NA NA NA NA ...
##   ..$ X4292.0.0                                               : int [1:9914] 0 NA 3 3 NA NA NA NA 3 NA ...
##   ..$ X4292.2.0                                               : int [1:9914] 3 3 3 3 0 3 3 3 3 3 ...
##   ..$ X4598.0.0                                               : int [1:9914] 1 NA 1 1 NA NA NA NA 1 NA ...
##   ..$ X4598.2.0                                               : int [1:9914] 1 0 1 1 1 1 0 0 1 0 ...
##   ..$ X4631.2.0                                               : int [1:9914] 1 0 1 1 NA 0 0 0 0 0 ...
##   ..$ X4653.0.0                                               : int [1:9914] 0 NA 0 1 NA NA NA NA 0 NA ...
##   ..$ X4653.2.0                                               : int [1:9914] 0 0 0 0 0 0 0 0 0 0 ...
##   .. [list output truncated]
##  $ imp            :List of 106
##   ..$ lh_aparc_area__lh_lateralorbitofrontal_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc_area__lh_postcentral_area                      :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc_area__lh_rostralmiddlefrontal_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc_area__lh_superiorfrontal_area                  :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc_area__lh_superiortemporal_area                 :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc_area__lh_WhiteSurfArea_area                    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.a2009s_area__lh_G_orbital_area                 :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.a2009s_area__lh_WhiteSurfArea_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_postcentral_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_precentral_area              :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_superiorfrontal_area         :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_superiortemporal_area        :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_area__lh_insula_area                  :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume:'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.pial_area__lh_lateralorbitofrontal_area        :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.pial_area__lh_rostralmiddlefrontal_area        :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_aparc.pial_area__lh_superiorfrontal_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_BA_exvivo_area__lh_BA3b_exvivo_area                  :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ lh_BA_exvivo_area__lh_WhiteSurfArea_area                :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc_area__rh_medialorbitofrontal_area              :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc_area__rh_rostralmiddlefrontal_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc_area__rh_superiorfrontal_area                  :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc_area__rh_superiortemporal_area                 :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc_area__rh_WhiteSurfArea_area                    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area            :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.a2009s_area__rh_WhiteSurfArea_area             :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.DKTatlas_area__rh_superiorfrontal_area         :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.DKTatlas_area__rh_superiortemporal_area        :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.DKTatlas_area__rh_insula_area                  :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume:'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ rh_BA_exvivo_area__rh_WhiteSurfArea_area                :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__BrainSegVol                                       :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__BrainSegVolNotVent                                :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__BrainSegVolNotVentSurf                            :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__lhCortexVol                                       :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__rhCortexVol                                       :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__CortexVol                                         :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__SubCortGrayVol                                    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__TotalGrayVol                                      :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__SupraTentorialVol                                 :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__SupraTentorialVolNotVent                          :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__SupraTentorialVolNotVentVox                       :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__MaskVol                                           :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ aseg__EstimatedTotalIntraCranialVol                     :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ wmparc__wm.lh.lateralorbitofrontal                      :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ wmparc__wm.lh.superiortemporal                          :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ wmparc__wm.lh.insula                                    :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ X31.0.0                                                 :'data.frame': 0 obs. of  12 variables:
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   .. ..$ 1: logi(0) 
##   .. ..$ 2: logi(0) 
##   ..$ X1170.0.0                                               :'data.frame': 137 obs. of  12 variables:
##   .. ..$ 1: num [1:137] 4 4 3 4 4 3 4 2 4 3 ...
##   .. ..$ 2: num [1:137] 3 4 3 4 3 2 3 1 3 4 ...
##   .. ..$ 1: num [1:137] 4 4 3 4 4 3 4 2 4 3 ...
##   .. ..$ 2: num [1:137] 3 4 3 4 3 2 3 1 3 4 ...
##   .. ..$ 1: num [1:137] 4 4 3 4 4 3 4 2 4 3 ...
##   .. ..$ 2: num [1:137] 3 4 3 4 3 2 3 1 3 4 ...
##   .. ..$ 1: num [1:137] 4 4 3 4 4 3 4 2 4 3 ...
##   .. ..$ 2: num [1:137] 3 4 3 4 3 2 3 1 3 4 ...
##   .. ..$ 1: num [1:137] 4 4 3 4 4 3 4 2 4 3 ...
##   .. ..$ 2: num [1:137] 3 4 3 4 3 2 3 1 3 4 ...
##   .. ..$ 1: num [1:137] 4 4 3 4 4 3 4 2 4 3 ...
##   .. ..$ 2: num [1:137] 3 4 3 4 3 2 3 1 3 4 ...
##   ..$ X1170.1.0                                               :'data.frame': 6696 obs. of  12 variables:
##   .. ..$ 1: num [1:6696] 2 3 2 3 4 3 2 1 3 3 ...
##   .. ..$ 2: num [1:6696] 2 3 2 3 4 3 2 2 3 3 ...
##   .. ..$ 1: num [1:6696] 2 3 2 3 4 3 2 1 3 3 ...
##   .. ..$ 2: num [1:6696] 2 3 2 3 4 3 2 2 3 3 ...
##   .. ..$ 1: num [1:6696] 2 3 2 3 4 3 2 1 3 3 ...
##   .. ..$ 2: num [1:6696] 2 3 2 3 4 3 2 2 3 3 ...
##   .. ..$ 1: num [1:6696] 2 3 2 3 4 3 2 1 3 3 ...
##   .. ..$ 2: num [1:6696] 2 3 2 3 4 3 2 2 3 3 ...
##   .. ..$ 1: num [1:6696] 2 3 2 3 4 3 2 1 3 3 ...
##   .. ..$ 2: num [1:6696] 2 3 2 3 4 3 2 2 3 3 ...
##   .. ..$ 1: num [1:6696] 2 3 2 3 4 3 2 1 3 3 ...
##   .. ..$ 2: num [1:6696] 2 3 2 3 4 3 2 2 3 3 ...
##   ..$ X1170.2.0                                               :'data.frame': 74 obs. of  12 variables:
##   .. ..$ 1: num [1:74] 4 4 4 3 4 2 4 4 4 4 ...
##   .. ..$ 2: num [1:74] 4 3 4 2 2 3 4 4 3 4 ...
##   .. ..$ 1: num [1:74] 4 4 4 3 4 2 4 4 4 4 ...
##   .. ..$ 2: num [1:74] 4 3 4 2 2 3 4 4 3 4 ...
##   .. ..$ 1: num [1:74] 4 4 4 3 4 2 4 4 4 4 ...
##   .. ..$ 2: num [1:74] 4 3 4 2 2 3 4 4 3 4 ...
##   .. ..$ 1: num [1:74] 4 4 4 3 4 2 4 4 4 4 ...
##   .. ..$ 2: num [1:74] 4 3 4 2 2 3 4 4 3 4 ...
##   .. ..$ 1: num [1:74] 4 4 4 3 4 2 4 4 4 4 ...
##   .. ..$ 2: num [1:74] 4 3 4 2 2 3 4 4 3 4 ...
##   .. ..$ 1: num [1:74] 4 4 4 3 4 2 4 4 4 4 ...
##   .. ..$ 2: num [1:74] 4 3 4 2 2 3 4 4 3 4 ...
##   ..$ X1190.0.0                                               :'data.frame': 3 obs. of  12 variables:
##   .. ..$ 1: num [1:3] 1 2 2
##   .. ..$ 2: num [1:3] 1 2 2
##   .. ..$ 1: num [1:3] 1 2 2
##   .. ..$ 2: num [1:3] 1 2 2
##   .. ..$ 1: num [1:3] 1 2 2
##   .. ..$ 2: num [1:3] 1 2 2
##   .. ..$ 1: num [1:3] 1 2 2
##   .. ..$ 2: num [1:3] 1 2 2
##   .. ..$ 1: num [1:3] 1 2 2
##   .. ..$ 2: num [1:3] 1 2 2
##   .. ..$ 1: num [1:3] 1 2 2
##   .. ..$ 2: num [1:3] 1 2 2
##   ..$ X1190.1.0                                               :'data.frame': 6696 obs. of  12 variables:
##   .. ..$ 1: num [1:6696] 2 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 2: num [1:6696] 1 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 1: num [1:6696] 2 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 2: num [1:6696] 1 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 1: num [1:6696] 2 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 2: num [1:6696] 1 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 1: num [1:6696] 2 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 2: num [1:6696] 1 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 1: num [1:6696] 2 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 2: num [1:6696] 1 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 1: num [1:6696] 2 1 2 1 1 2 1 2 3 1 ...
##   .. ..$ 2: num [1:6696] 1 1 2 1 1 2 1 2 3 1 ...
##   ..$ X1190.2.0                                               :'data.frame': 72 obs. of  12 variables:
##   .. ..$ 1: num [1:72] 2 3 1 1 2 1 1 2 1 1 ...
##   .. ..$ 2: num [1:72] 1 2 1 2 2 2 1 1 2 1 ...
##   .. ..$ 1: num [1:72] 2 3 1 1 2 1 1 2 1 1 ...
##   .. ..$ 2: num [1:72] 1 2 1 2 2 2 1 1 2 1 ...
##   .. ..$ 1: num [1:72] 2 3 1 1 2 1 1 2 1 1 ...
##   .. ..$ 2: num [1:72] 1 2 1 2 2 2 1 1 2 1 ...
##   .. ..$ 1: num [1:72] 2 3 1 1 2 1 1 2 1 1 ...
##   .. ..$ 2: num [1:72] 1 2 1 2 2 2 1 1 2 1 ...
##   .. ..$ 1: num [1:72] 2 3 1 1 2 1 1 2 1 1 ...
##   .. ..$ 2: num [1:72] 1 2 1 2 2 2 1 1 2 1 ...
##   .. ..$ 1: num [1:72] 2 3 1 1 2 1 1 2 1 1 ...
##   .. ..$ 2: num [1:72] 1 2 1 2 2 2 1 1 2 1 ...
##   ..$ X1200.0.0                                               :'data.frame': 6 obs. of  12 variables:
##   .. ..$ 1: num [1:6] 1 1 2 2 3 2
##   .. ..$ 2: num [1:6] 1 2 1 3 3 2
##   .. ..$ 1: num [1:6] 1 1 2 2 3 2
##   .. ..$ 2: num [1:6] 1 2 1 3 3 2
##   .. ..$ 1: num [1:6] 1 1 2 2 3 2
##   .. ..$ 2: num [1:6] 1 2 1 3 3 2
##   .. ..$ 1: num [1:6] 1 1 2 2 3 2
##   .. ..$ 2: num [1:6] 1 2 1 3 3 2
##   .. ..$ 1: num [1:6] 1 1 2 2 3 2
##   .. ..$ 2: num [1:6] 1 2 1 3 3 2
##   .. ..$ 1: num [1:6] 1 1 2 2 3 2
##   .. ..$ 2: num [1:6] 1 2 1 3 3 2
##   ..$ X1200.1.0                                               :'data.frame': 6697 obs. of  12 variables:
##   .. ..$ 1: num [1:6697] 3 1 3 2 2 3 2 2 2 2 ...
##   .. ..$ 2: num [1:6697] 3 2 3 2 2 2 2 1 2 1 ...
##   .. ..$ 1: num [1:6697] 3 1 3 2 2 3 2 2 2 2 ...
##   .. ..$ 2: num [1:6697] 3 2 3 2 2 2 2 1 2 1 ...
##   .. ..$ 1: num [1:6697] 3 1 3 2 2 3 2 2 2 2 ...
##   .. ..$ 2: num [1:6697] 3 2 3 2 2 2 2 1 2 1 ...
##   .. ..$ 1: num [1:6697] 3 1 3 2 2 3 2 2 2 2 ...
##   .. ..$ 2: num [1:6697] 3 2 3 2 2 2 2 1 2 1 ...
##   .. ..$ 1: num [1:6697] 3 1 3 2 2 3 2 2 2 2 ...
##   .. ..$ 2: num [1:6697] 3 2 3 2 2 2 2 1 2 1 ...
##   .. ..$ 1: num [1:6697] 3 1 3 2 2 3 2 2 2 2 ...
##   .. ..$ 2: num [1:6697] 3 2 3 2 2 2 2 1 2 1 ...
##   ..$ X1200.2.0                                               :'data.frame': 76 obs. of  12 variables:
##   .. ..$ 1: num [1:76] 2 2 2 2 1 2 3 2 2 1 ...
##   .. ..$ 2: num [1:76] 2 3 2 2 1 1 2 2 2 1 ...
##   .. ..$ 1: num [1:76] 2 2 2 2 1 2 3 2 2 1 ...
##   .. ..$ 2: num [1:76] 2 3 2 2 1 1 2 2 2 1 ...
##   .. ..$ 1: num [1:76] 2 2 2 2 1 2 3 2 2 1 ...
##   .. ..$ 2: num [1:76] 2 3 2 2 1 1 2 2 2 1 ...
##   .. ..$ 1: num [1:76] 2 2 2 2 1 2 3 2 2 1 ...
##   .. ..$ 2: num [1:76] 2 3 2 2 1 1 2 2 2 1 ...
##   .. ..$ 1: num [1:76] 2 2 2 2 1 2 3 2 2 1 ...
##   .. ..$ 2: num [1:76] 2 3 2 2 1 1 2 2 2 1 ...
##   .. ..$ 1: num [1:76] 2 2 2 2 1 2 3 2 2 1 ...
##   .. ..$ 2: num [1:76] 2 3 2 2 1 1 2 2 2 1 ...
##   ..$ X1210.0.0                                               :'data.frame': 583 obs. of  12 variables:
##   .. ..$ 1: num [1:583] 1 2 1 2 2 2 1 1 2 2 ...
##   .. ..$ 2: num [1:583] 1 2 1 1 2 2 1 2 2 2 ...
##   .. ..$ 1: num [1:583] 1 2 1 2 2 2 1 1 2 2 ...
##   .. ..$ 2: num [1:583] 1 2 1 1 2 2 1 2 2 2 ...
##   .. ..$ 1: num [1:583] 1 2 1 2 2 2 1 1 2 2 ...
##   .. ..$ 2: num [1:583] 1 2 1 1 2 2 1 2 2 2 ...
##   .. ..$ 1: num [1:583] 1 2 1 2 2 2 1 1 2 2 ...
##   .. ..$ 2: num [1:583] 1 2 1 1 2 2 1 2 2 2 ...
##   .. ..$ 1: num [1:583] 1 2 1 2 2 2 1 1 2 2 ...
##   .. ..$ 2: num [1:583] 1 2 1 1 2 2 1 2 2 2 ...
##   .. ..$ 1: num [1:583] 1 2 1 2 2 2 1 1 2 2 ...
##   .. ..$ 2: num [1:583] 1 2 1 1 2 2 1 2 2 2 ...
##   ..$ X1210.2.0                                               :'data.frame': 752 obs. of  12 variables:
##   .. ..$ 1: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 2: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 1: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 2: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 1: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 2: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 1: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 2: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 1: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 2: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 1: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   .. ..$ 2: num [1:752] 2 1 1 1 1 2 2 2 2 2 ...
##   ..$ X1249.2.0                                               :'data.frame': 351 obs. of  12 variables:
##   .. ..$ 1: num [1:351] 2 4 3 4 4 2 4 4 4 3 ...
##   .. ..$ 2: num [1:351] 3 4 4 3 4 4 4 2 1 4 ...
##   .. ..$ 1: num [1:351] 2 4 3 4 4 2 4 4 4 3 ...
##   .. ..$ 2: num [1:351] 3 4 4 3 4 4 4 2 1 4 ...
##   .. ..$ 1: num [1:351] 2 4 3 4 4 2 4 4 4 3 ...
##   .. ..$ 2: num [1:351] 3 4 4 3 4 4 4 2 1 4 ...
##   .. ..$ 1: num [1:351] 2 4 3 4 4 2 4 4 4 3 ...
##   .. ..$ 2: num [1:351] 3 4 4 3 4 4 4 2 1 4 ...
##   .. ..$ 1: num [1:351] 2 4 3 4 4 2 4 4 4 3 ...
##   .. ..$ 2: num [1:351] 3 4 4 3 4 4 4 2 1 4 ...
##   .. ..$ 1: num [1:351] 2 4 3 4 4 2 4 4 4 3 ...
##   .. ..$ 2: num [1:351] 3 4 4 3 4 4 4 2 1 4 ...
##   ..$ X1618.0.0                                               :'data.frame': 4771 obs. of  12 variables:
##   .. ..$ 1: num [1:4771] 0 0 0 1 0 1 0 0 0 1 ...
##   .. ..$ 2: num [1:4771] 0 0 1 0 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:4771] 0 0 0 1 0 1 0 0 0 1 ...
##   .. ..$ 2: num [1:4771] 0 0 1 0 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:4771] 0 0 0 1 0 1 0 0 0 1 ...
##   .. ..$ 2: num [1:4771] 0 0 1 0 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:4771] 0 0 0 1 0 1 0 0 0 1 ...
##   .. ..$ 2: num [1:4771] 0 0 1 0 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:4771] 0 0 0 1 0 1 0 0 0 1 ...
##   .. ..$ 2: num [1:4771] 0 0 1 0 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:4771] 0 0 0 1 0 1 0 0 0 1 ...
##   .. ..$ 2: num [1:4771] 0 0 1 0 0 0 1 0 1 1 ...
##   ..$ X1618.1.0                                               :'data.frame': 7900 obs. of  12 variables:
##   .. ..$ 1: num [1:7900] 1 0 1 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:7900] 1 0 1 0 1 0 0 1 1 1 ...
##   .. ..$ 1: num [1:7900] 1 0 1 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:7900] 1 0 1 0 1 0 0 1 1 1 ...
##   .. ..$ 1: num [1:7900] 1 0 1 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:7900] 1 0 1 0 1 0 0 1 1 1 ...
##   .. ..$ 1: num [1:7900] 1 0 1 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:7900] 1 0 1 0 1 0 0 1 1 1 ...
##   .. ..$ 1: num [1:7900] 1 0 1 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:7900] 1 0 1 0 1 0 0 1 1 1 ...
##   .. ..$ 1: num [1:7900] 1 0 1 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:7900] 1 0 1 0 1 0 0 1 1 1 ...
##   ..$ X1618.2.0                                               :'data.frame': 3846 obs. of  12 variables:
##   .. ..$ 1: num [1:3846] 1 0 1 0 0 1 1 1 0 0 ...
##   .. ..$ 2: num [1:3846] 1 1 1 0 1 1 0 1 0 1 ...
##   .. ..$ 1: num [1:3846] 1 0 1 0 0 1 1 1 0 0 ...
##   .. ..$ 2: num [1:3846] 1 1 1 0 1 1 0 1 0 1 ...
##   .. ..$ 1: num [1:3846] 1 0 1 0 0 1 1 1 0 0 ...
##   .. ..$ 2: num [1:3846] 1 1 1 0 1 1 0 1 0 1 ...
##   .. ..$ 1: num [1:3846] 1 0 1 0 0 1 1 1 0 0 ...
##   .. ..$ 2: num [1:3846] 1 1 1 0 1 1 0 1 0 1 ...
##   .. ..$ 1: num [1:3846] 1 0 1 0 0 1 1 1 0 0 ...
##   .. ..$ 2: num [1:3846] 1 1 1 0 1 1 0 1 0 1 ...
##   .. ..$ 1: num [1:3846] 1 0 1 0 0 1 1 1 0 0 ...
##   .. ..$ 2: num [1:3846] 1 1 1 0 1 1 0 1 0 1 ...
##   ..$ X1628.0.0                                               :'data.frame': 517 obs. of  12 variables:
##   .. ..$ 1: num [1:517] 3 3 2 1 2 3 2 2 2 3 ...
##   .. ..$ 2: num [1:517] 2 3 1 1 3 3 3 3 1 2 ...
##   .. ..$ 1: num [1:517] 3 3 2 1 2 3 2 2 2 3 ...
##   .. ..$ 2: num [1:517] 2 3 1 1 3 3 3 3 1 2 ...
##   .. ..$ 1: num [1:517] 3 3 2 1 2 3 2 2 2 3 ...
##   .. ..$ 2: num [1:517] 2 3 1 1 3 3 3 3 1 2 ...
##   .. ..$ 1: num [1:517] 3 3 2 1 2 3 2 2 2 3 ...
##   .. ..$ 2: num [1:517] 2 3 1 1 3 3 3 3 1 2 ...
##   .. ..$ 1: num [1:517] 3 3 2 1 2 3 2 2 2 3 ...
##   .. ..$ 2: num [1:517] 2 3 1 1 3 3 3 3 1 2 ...
##   .. ..$ 1: num [1:517] 3 3 2 1 2 3 2 2 2 3 ...
##   .. ..$ 2: num [1:517] 2 3 1 1 3 3 3 3 1 2 ...
##   ..$ X1930.0.0                                               :'data.frame': 123 obs. of  12 variables:
##   .. ..$ 1: num [1:123] 0 0 0 1 1 0 1 0 1 0 ...
##   .. ..$ 2: num [1:123] 1 0 1 1 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:123] 0 0 0 1 1 0 1 0 1 0 ...
##   .. ..$ 2: num [1:123] 1 0 1 1 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:123] 0 0 0 1 1 0 1 0 1 0 ...
##   .. ..$ 2: num [1:123] 1 0 1 1 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:123] 0 0 0 1 1 0 1 0 1 0 ...
##   .. ..$ 2: num [1:123] 1 0 1 1 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:123] 0 0 0 1 1 0 1 0 1 0 ...
##   .. ..$ 2: num [1:123] 1 0 1 1 0 0 1 0 1 1 ...
##   .. ..$ 1: num [1:123] 0 0 0 1 1 0 1 0 1 0 ...
##   .. ..$ 2: num [1:123] 1 0 1 1 0 0 1 0 1 1 ...
##   ..$ X1930.2.0                                               :'data.frame': 181 obs. of  12 variables:
##   .. ..$ 1: num [1:181] 1 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 2: num [1:181] 0 1 0 0 0 1 1 0 0 0 ...
##   .. ..$ 1: num [1:181] 1 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 2: num [1:181] 0 1 0 0 0 1 1 0 0 0 ...
##   .. ..$ 1: num [1:181] 1 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 2: num [1:181] 0 1 0 0 0 1 1 0 0 0 ...
##   .. ..$ 1: num [1:181] 1 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 2: num [1:181] 0 1 0 0 0 1 1 0 0 0 ...
##   .. ..$ 1: num [1:181] 1 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 2: num [1:181] 0 1 0 0 0 1 1 0 0 0 ...
##   .. ..$ 1: num [1:181] 1 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 2: num [1:181] 0 1 0 0 0 1 1 0 0 0 ...
##   ..$ X1950.0.0                                               :'data.frame': 266 obs. of  12 variables:
##   .. ..$ 1: num [1:266] 1 0 1 1 1 0 1 1 1 1 ...
##   .. ..$ 2: num [1:266] 0 0 1 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:266] 1 0 1 1 1 0 1 1 1 1 ...
##   .. ..$ 2: num [1:266] 0 0 1 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:266] 1 0 1 1 1 0 1 1 1 1 ...
##   .. ..$ 2: num [1:266] 0 0 1 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:266] 1 0 1 1 1 0 1 1 1 1 ...
##   .. ..$ 2: num [1:266] 0 0 1 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:266] 1 0 1 1 1 0 1 1 1 1 ...
##   .. ..$ 2: num [1:266] 0 0 1 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:266] 1 0 1 1 1 0 1 1 1 1 ...
##   .. ..$ 2: num [1:266] 0 0 1 1 0 1 1 1 0 1 ...
##   ..$ X1950.2.0                                               :'data.frame': 301 obs. of  12 variables:
##   .. ..$ 1: num [1:301] 0 1 0 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:301] 0 1 1 0 1 0 1 1 1 0 ...
##   .. ..$ 1: num [1:301] 0 1 0 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:301] 0 1 1 0 1 0 1 1 1 0 ...
##   .. ..$ 1: num [1:301] 0 1 0 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:301] 0 1 1 0 1 0 1 1 1 0 ...
##   .. ..$ 1: num [1:301] 0 1 0 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:301] 0 1 1 0 1 0 1 1 1 0 ...
##   .. ..$ 1: num [1:301] 0 1 0 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:301] 0 1 1 0 1 0 1 1 1 0 ...
##   .. ..$ 1: num [1:301] 0 1 0 0 1 0 0 1 1 0 ...
##   .. ..$ 2: num [1:301] 0 1 1 0 1 0 1 1 1 0 ...
##   ..$ X1970.0.0                                               :'data.frame': 214 obs. of  12 variables:
##   .. ..$ 1: num [1:214] 0 1 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:214] 0 0 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:214] 0 1 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:214] 0 0 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:214] 0 1 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:214] 0 0 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:214] 0 1 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:214] 0 0 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:214] 0 1 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:214] 0 0 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:214] 0 1 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:214] 0 0 0 1 1 0 0 0 1 1 ...
##   ..$ X1970.2.0                                               :'data.frame': 253 obs. of  12 variables:
##   .. ..$ 1: num [1:253] 0 1 0 1 0 0 1 0 0 1 ...
##   .. ..$ 2: num [1:253] 0 0 0 1 1 0 1 0 0 1 ...
##   .. ..$ 1: num [1:253] 0 1 0 1 0 0 1 0 0 1 ...
##   .. ..$ 2: num [1:253] 0 0 0 1 1 0 1 0 0 1 ...
##   .. ..$ 1: num [1:253] 0 1 0 1 0 0 1 0 0 1 ...
##   .. ..$ 2: num [1:253] 0 0 0 1 1 0 1 0 0 1 ...
##   .. ..$ 1: num [1:253] 0 1 0 1 0 0 1 0 0 1 ...
##   .. ..$ 2: num [1:253] 0 0 0 1 1 0 1 0 0 1 ...
##   .. ..$ 1: num [1:253] 0 1 0 1 0 0 1 0 0 1 ...
##   .. ..$ 2: num [1:253] 0 0 0 1 1 0 1 0 0 1 ...
##   .. ..$ 1: num [1:253] 0 1 0 1 0 0 1 0 0 1 ...
##   .. ..$ 2: num [1:253] 0 0 0 1 1 0 1 0 0 1 ...
##   ..$ X1980.0.0                                               :'data.frame': 201 obs. of  12 variables:
##   .. ..$ 1: num [1:201] 1 0 0 1 1 1 1 0 1 0 ...
##   .. ..$ 2: num [1:201] 1 0 1 1 1 0 0 1 0 0 ...
##   .. ..$ 1: num [1:201] 1 0 0 1 1 1 1 0 1 0 ...
##   .. ..$ 2: num [1:201] 1 0 1 1 1 0 0 1 0 0 ...
##   .. ..$ 1: num [1:201] 1 0 0 1 1 1 1 0 1 0 ...
##   .. ..$ 2: num [1:201] 1 0 1 1 1 0 0 1 0 0 ...
##   .. ..$ 1: num [1:201] 1 0 0 1 1 1 1 0 1 0 ...
##   .. ..$ 2: num [1:201] 1 0 1 1 1 0 0 1 0 0 ...
##   .. ..$ 1: num [1:201] 1 0 0 1 1 1 1 0 1 0 ...
##   .. ..$ 2: num [1:201] 1 0 1 1 1 0 0 1 0 0 ...
##   .. ..$ 1: num [1:201] 1 0 0 1 1 1 1 0 1 0 ...
##   .. ..$ 2: num [1:201] 1 0 1 1 1 0 0 1 0 0 ...
##   ..$ X1980.1.0                                               :'data.frame': 6756 obs. of  12 variables:
##   .. ..$ 1: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 1: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 1: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 1: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 1: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 1: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:6756] 1 0 1 1 0 0 1 0 0 0 ...
##   ..$ X1980.2.0                                               :'data.frame': 289 obs. of  12 variables:
##   .. ..$ 1: num [1:289] 1 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:289] 1 0 0 0 1 1 0 0 1 0 ...
##   .. ..$ 1: num [1:289] 1 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:289] 1 0 0 0 1 1 0 0 1 0 ...
##   .. ..$ 1: num [1:289] 1 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:289] 1 0 0 0 1 1 0 0 1 0 ...
##   .. ..$ 1: num [1:289] 1 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:289] 1 0 0 0 1 1 0 0 1 0 ...
##   .. ..$ 1: num [1:289] 1 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:289] 1 0 0 0 1 1 0 0 1 0 ...
##   .. ..$ 1: num [1:289] 1 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 2: num [1:289] 1 0 0 0 1 1 0 0 1 0 ...
##   ..$ X2000.0.0                                               :'data.frame': 308 obs. of  12 variables:
##   .. ..$ 1: num [1:308] 1 1 0 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:308] 0 0 0 0 0 1 1 1 1 1 ...
##   .. ..$ 1: num [1:308] 1 1 0 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:308] 0 0 0 0 0 1 1 1 1 1 ...
##   .. ..$ 1: num [1:308] 1 1 0 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:308] 0 0 0 0 0 1 1 1 1 1 ...
##   .. ..$ 1: num [1:308] 1 1 0 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:308] 0 0 0 0 0 1 1 1 1 1 ...
##   .. ..$ 1: num [1:308] 1 1 0 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:308] 0 0 0 0 0 1 1 1 1 1 ...
##   .. ..$ 1: num [1:308] 1 1 0 1 0 0 1 0 0 0 ...
##   .. ..$ 2: num [1:308] 0 0 0 0 0 1 1 1 1 1 ...
##   ..$ X2000.2.0                                               :'data.frame': 412 obs. of  12 variables:
##   .. ..$ 1: num [1:412] 1 1 0 1 1 1 1 0 1 1 ...
##   .. ..$ 2: num [1:412] 0 1 0 1 0 0 1 1 1 0 ...
##   .. ..$ 1: num [1:412] 1 1 0 1 1 1 1 0 1 1 ...
##   .. ..$ 2: num [1:412] 0 1 0 1 0 0 1 1 1 0 ...
##   .. ..$ 1: num [1:412] 1 1 0 1 1 1 1 0 1 1 ...
##   .. ..$ 2: num [1:412] 0 1 0 1 0 0 1 1 1 0 ...
##   .. ..$ 1: num [1:412] 1 1 0 1 1 1 1 0 1 1 ...
##   .. ..$ 2: num [1:412] 0 1 0 1 0 0 1 1 1 0 ...
##   .. ..$ 1: num [1:412] 1 1 0 1 1 1 1 0 1 1 ...
##   .. ..$ 2: num [1:412] 0 1 0 1 0 0 1 1 1 0 ...
##   .. ..$ 1: num [1:412] 1 1 0 1 1 1 1 0 1 1 ...
##   .. ..$ 2: num [1:412] 0 1 0 1 0 0 1 1 1 0 ...
##   ..$ X2030.0.0                                               :'data.frame': 164 obs. of  12 variables:
##   .. ..$ 1: num [1:164] 0 1 0 1 0 0 0 0 1 1 ...
##   .. ..$ 2: num [1:164] 0 1 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:164] 0 1 0 1 0 0 0 0 1 1 ...
##   .. ..$ 2: num [1:164] 0 1 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:164] 0 1 0 1 0 0 0 0 1 1 ...
##   .. ..$ 2: num [1:164] 0 1 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:164] 0 1 0 1 0 0 0 0 1 1 ...
##   .. ..$ 2: num [1:164] 0 1 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:164] 0 1 0 1 0 0 0 0 1 1 ...
##   .. ..$ 2: num [1:164] 0 1 0 1 1 0 0 0 1 1 ...
##   .. ..$ 1: num [1:164] 0 1 0 1 0 0 0 0 1 1 ...
##   .. ..$ 2: num [1:164] 0 1 0 1 1 0 0 0 1 1 ...
##   ..$ X2030.2.0                                               :'data.frame': 236 obs. of  12 variables:
##   .. ..$ 1: num [1:236] 1 1 0 1 0 0 0 1 1 1 ...
##   .. ..$ 2: num [1:236] 1 0 1 1 1 0 0 0 0 0 ...
##   .. ..$ 1: num [1:236] 1 1 0 1 0 0 0 1 1 1 ...
##   .. ..$ 2: num [1:236] 1 0 1 1 1 0 0 0 0 0 ...
##   .. ..$ 1: num [1:236] 1 1 0 1 0 0 0 1 1 1 ...
##   .. ..$ 2: num [1:236] 1 0 1 1 1 0 0 0 0 0 ...
##   .. ..$ 1: num [1:236] 1 1 0 1 0 0 0 1 1 1 ...
##   .. ..$ 2: num [1:236] 1 0 1 1 1 0 0 0 0 0 ...
##   .. ..$ 1: num [1:236] 1 1 0 1 0 0 0 1 1 1 ...
##   .. ..$ 2: num [1:236] 1 0 1 1 1 0 0 0 0 0 ...
##   .. ..$ 1: num [1:236] 1 1 0 1 0 0 0 1 1 1 ...
##   .. ..$ 2: num [1:236] 1 0 1 1 1 0 0 0 0 0 ...
##   ..$ X2040.0.0                                               :'data.frame': 296 obs. of  12 variables:
##   .. ..$ 1: num [1:296] 1 0 0 0 0 0 0 1 0 1 ...
##   .. ..$ 2: num [1:296] 0 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 1: num [1:296] 1 0 0 0 0 0 0 1 0 1 ...
##   .. ..$ 2: num [1:296] 0 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 1: num [1:296] 1 0 0 0 0 0 0 1 0 1 ...
##   .. ..$ 2: num [1:296] 0 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 1: num [1:296] 1 0 0 0 0 0 0 1 0 1 ...
##   .. ..$ 2: num [1:296] 0 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 1: num [1:296] 1 0 0 0 0 0 0 1 0 1 ...
##   .. ..$ 2: num [1:296] 0 1 0 0 0 1 0 1 0 0 ...
##   .. ..$ 1: num [1:296] 1 0 0 0 0 0 0 1 0 1 ...
##   .. ..$ 2: num [1:296] 0 1 0 0 0 1 0 1 0 0 ...
##   ..$ X2040.1.0                                               :'data.frame': 6804 obs. of  12 variables:
##   .. ..$ 1: num [1:6804] 0 1 0 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6804] 0 1 0 0 0 1 0 0 1 0 ...
##   .. ..$ 1: num [1:6804] 0 1 0 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6804] 0 1 0 0 0 1 0 0 1 0 ...
##   .. ..$ 1: num [1:6804] 0 1 0 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6804] 0 1 0 0 0 1 0 0 1 0 ...
##   .. ..$ 1: num [1:6804] 0 1 0 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6804] 0 1 0 0 0 1 0 0 1 0 ...
##   .. ..$ 1: num [1:6804] 0 1 0 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6804] 0 1 0 0 0 1 0 0 1 0 ...
##   .. ..$ 1: num [1:6804] 0 1 0 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6804] 0 1 0 0 0 1 0 0 1 0 ...
##   ..$ X2040.2.0                                               :'data.frame': 385 obs. of  12 variables:
##   .. ..$ 1: num [1:385] 0 0 0 0 0 0 0 0 1 0 ...
##   .. ..$ 2: num [1:385] 0 0 0 0 0 0 0 1 0 0 ...
##   .. ..$ 1: num [1:385] 0 0 0 0 0 0 0 0 1 0 ...
##   .. ..$ 2: num [1:385] 0 0 0 0 0 0 0 1 0 0 ...
##   .. ..$ 1: num [1:385] 0 0 0 0 0 0 0 0 1 0 ...
##   .. ..$ 2: num [1:385] 0 0 0 0 0 0 0 1 0 0 ...
##   .. ..$ 1: num [1:385] 0 0 0 0 0 0 0 0 1 0 ...
##   .. ..$ 2: num [1:385] 0 0 0 0 0 0 0 1 0 0 ...
##   .. ..$ 1: num [1:385] 0 0 0 0 0 0 0 0 1 0 ...
##   .. ..$ 2: num [1:385] 0 0 0 0 0 0 0 1 0 0 ...
##   .. ..$ 1: num [1:385] 0 0 0 0 0 0 0 0 1 0 ...
##   .. ..$ 2: num [1:385] 0 0 0 0 0 0 0 1 0 0 ...
##   ..$ X2050.0.0                                               :'data.frame': 295 obs. of  12 variables:
##   .. ..$ 1: num [1:295] 1 4 1 1 2 1 1 1 1 1 ...
##   .. ..$ 2: num [1:295] 1 2 1 1 1 1 1 1 1 1 ...
##   .. ..$ 1: num [1:295] 1 4 1 1 2 1 1 1 1 1 ...
##   .. ..$ 2: num [1:295] 1 2 1 1 1 1 1 1 1 1 ...
##   .. ..$ 1: num [1:295] 1 4 1 1 2 1 1 1 1 1 ...
##   .. ..$ 2: num [1:295] 1 2 1 1 1 1 1 1 1 1 ...
##   .. ..$ 1: num [1:295] 1 4 1 1 2 1 1 1 1 1 ...
##   .. ..$ 2: num [1:295] 1 2 1 1 1 1 1 1 1 1 ...
##   .. ..$ 1: num [1:295] 1 4 1 1 2 1 1 1 1 1 ...
##   .. ..$ 2: num [1:295] 1 2 1 1 1 1 1 1 1 1 ...
##   .. ..$ 1: num [1:295] 1 4 1 1 2 1 1 1 1 1 ...
##   .. ..$ 2: num [1:295] 1 2 1 1 1 1 1 1 1 1 ...
##   ..$ X2080.0.0                                               :'data.frame': 175 obs. of  12 variables:
##   .. ..$ 1: num [1:175] 3 1 1 1 1 3 1 1 1 2 ...
##   .. ..$ 2: num [1:175] 3 1 1 2 1 1 2 2 1 1 ...
##   .. ..$ 1: num [1:175] 3 1 1 1 1 3 1 1 1 2 ...
##   .. ..$ 2: num [1:175] 3 1 1 2 1 1 2 2 1 1 ...
##   .. ..$ 1: num [1:175] 3 1 1 1 1 3 1 1 1 2 ...
##   .. ..$ 2: num [1:175] 3 1 1 2 1 1 2 2 1 1 ...
##   .. ..$ 1: num [1:175] 3 1 1 1 1 3 1 1 1 2 ...
##   .. ..$ 2: num [1:175] 3 1 1 2 1 1 2 2 1 1 ...
##   .. ..$ 1: num [1:175] 3 1 1 1 1 3 1 1 1 2 ...
##   .. ..$ 2: num [1:175] 3 1 1 2 1 1 2 2 1 1 ...
##   .. ..$ 1: num [1:175] 3 1 1 1 1 3 1 1 1 2 ...
##   .. ..$ 2: num [1:175] 3 1 1 2 1 1 2 2 1 1 ...
##   ..$ X2080.2.0                                               :'data.frame': 266 obs. of  12 variables:
##   .. ..$ 1: num [1:266] 1 1 1 1 2 1 1 2 2 1 ...
##   .. ..$ 2: num [1:266] 1 1 1 1 2 2 1 1 4 1 ...
##   .. ..$ 1: num [1:266] 1 1 1 1 2 1 1 2 2 1 ...
##   .. ..$ 2: num [1:266] 1 1 1 1 2 2 1 1 4 1 ...
##   .. ..$ 1: num [1:266] 1 1 1 1 2 1 1 2 2 1 ...
##   .. ..$ 2: num [1:266] 1 1 1 1 2 2 1 1 4 1 ...
##   .. ..$ 1: num [1:266] 1 1 1 1 2 1 1 2 2 1 ...
##   .. ..$ 2: num [1:266] 1 1 1 1 2 2 1 1 4 1 ...
##   .. ..$ 1: num [1:266] 1 1 1 1 2 1 1 2 2 1 ...
##   .. ..$ 2: num [1:266] 1 1 1 1 2 2 1 1 4 1 ...
##   .. ..$ 1: num [1:266] 1 1 1 1 2 1 1 2 2 1 ...
##   .. ..$ 2: num [1:266] 1 1 1 1 2 2 1 1 4 1 ...
##   ..$ X2090.0.0                                               :'data.frame': 41 obs. of  12 variables:
##   .. ..$ 1: num [1:41] 0 0 1 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:41] 0 0 0 0 1 1 0 0 0 1 ...
##   .. ..$ 1: num [1:41] 0 0 1 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:41] 0 0 0 0 1 1 0 0 0 1 ...
##   .. ..$ 1: num [1:41] 0 0 1 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:41] 0 0 0 0 1 1 0 0 0 1 ...
##   .. ..$ 1: num [1:41] 0 0 1 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:41] 0 0 0 0 1 1 0 0 0 1 ...
##   .. ..$ 1: num [1:41] 0 0 1 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:41] 0 0 0 0 1 1 0 0 0 1 ...
##   .. ..$ 1: num [1:41] 0 0 1 0 1 1 0 0 0 0 ...
##   .. ..$ 2: num [1:41] 0 0 0 0 1 1 0 0 0 1 ...
##   ..$ X2090.1.0                                               :'data.frame': 6707 obs. of  12 variables:
##   .. ..$ 1: num [1:6707] 1 0 1 1 0 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6707] 1 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6707] 1 0 1 1 0 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6707] 1 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6707] 1 0 1 1 0 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6707] 1 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6707] 1 0 1 1 0 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6707] 1 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6707] 1 0 1 1 0 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6707] 1 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6707] 1 0 1 1 0 1 0 0 0 0 ...
##   .. ..$ 2: num [1:6707] 1 0 1 1 0 0 0 0 0 0 ...
##   ..$ X2090.2.0                                               :'data.frame': 113 obs. of  12 variables:
##   .. ..$ 1: num [1:113] 0 1 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:113] 1 1 1 0 1 1 0 0 0 0 ...
##   .. ..$ 1: num [1:113] 0 1 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:113] 1 1 1 0 1 1 0 0 0 0 ...
##   .. ..$ 1: num [1:113] 0 1 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:113] 1 1 1 0 1 1 0 0 0 0 ...
##   .. ..$ 1: num [1:113] 0 1 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:113] 1 1 1 0 1 1 0 0 0 0 ...
##   .. ..$ 1: num [1:113] 0 1 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:113] 1 1 1 0 1 1 0 0 0 0 ...
##   .. ..$ 1: num [1:113] 0 1 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:113] 1 1 1 0 1 1 0 0 0 0 ...
##   ..$ X2877.0.0                                               :'data.frame': 7610 obs. of  12 variables:
##   .. ..$ 1: num [1:7610] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7610] 1 1 1 1 2 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7610] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7610] 1 1 1 1 2 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7610] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7610] 1 1 1 1 2 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7610] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7610] 1 1 1 1 2 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7610] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7610] 1 1 1 1 2 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7610] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7610] 1 1 1 1 2 1 1 1 2 1 ...
##   ..$ X2877.2.0                                               :'data.frame': 7561 obs. of  12 variables:
##   .. ..$ 1: num [1:7561] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7561] 1 1 1 1 1 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7561] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7561] 1 1 1 1 1 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7561] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7561] 1 1 1 1 1 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7561] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7561] 1 1 1 1 1 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7561] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7561] 1 1 1 1 1 1 1 1 2 1 ...
##   .. ..$ 1: num [1:7561] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ 2: num [1:7561] 1 1 1 1 1 1 1 1 2 1 ...
##   ..$ X3446.0.0                                               :'data.frame': 9480 obs. of  12 variables:
##   .. ..$ 1: num [1:9480] 1 2 1 1 3 1 1 1 1 1 ...
##   .. ..$ 2: num [1:9480] 1 1 1 1 3 1 1 1 1 1 ...
##   .. ..$ 1: num [1:9480] 1 2 1 1 3 1 1 1 1 1 ...
##   .. ..$ 2: num [1:9480] 1 1 1 1 3 1 1 1 1 1 ...
##   .. ..$ 1: num [1:9480] 1 2 1 1 3 1 1 1 1 1 ...
##   .. ..$ 2: num [1:9480] 1 1 1 1 3 1 1 1 1 1 ...
##   .. ..$ 1: num [1:9480] 1 2 1 1 3 1 1 1 1 1 ...
##   .. ..$ 2: num [1:9480] 1 1 1 1 3 1 1 1 1 1 ...
##   .. ..$ 1: num [1:9480] 1 2 1 1 3 1 1 1 1 1 ...
##   .. ..$ 2: num [1:9480] 1 1 1 1 3 1 1 1 1 1 ...
##   .. ..$ 1: num [1:9480] 1 2 1 1 3 1 1 1 1 1 ...
##   .. ..$ 2: num [1:9480] 1 1 1 1 3 1 1 1 1 1 ...
##   ..$ X4292.0.0                                               :'data.frame': 6408 obs. of  12 variables:
##   .. ..$ 1: num [1:6408] 3 0 3 3 3 3 3 3 3 3 ...
##   .. ..$ 2: num [1:6408] 0 0 0 3 3 3 3 3 3 0 ...
##   .. ..$ 1: num [1:6408] 3 0 3 3 3 3 3 3 3 3 ...
##   .. ..$ 2: num [1:6408] 0 0 0 3 3 3 3 3 3 0 ...
##   .. ..$ 1: num [1:6408] 3 0 3 3 3 3 3 3 3 3 ...
##   .. ..$ 2: num [1:6408] 0 0 0 3 3 3 3 3 3 0 ...
##   .. ..$ 1: num [1:6408] 3 0 3 3 3 3 3 3 3 3 ...
##   .. ..$ 2: num [1:6408] 0 0 0 3 3 3 3 3 3 0 ...
##   .. ..$ 1: num [1:6408] 3 0 3 3 3 3 3 3 3 3 ...
##   .. ..$ 2: num [1:6408] 0 0 0 3 3 3 3 3 3 0 ...
##   .. ..$ 1: num [1:6408] 3 0 3 3 3 3 3 3 3 3 ...
##   .. ..$ 2: num [1:6408] 0 0 0 3 3 3 3 3 3 0 ...
##   ..$ X4292.2.0                                               :'data.frame': 96 obs. of  12 variables:
##   .. ..$ 1: num [1:96] 3 3 3 3 3 0 3 3 3 3 ...
##   .. ..$ 2: num [1:96] 3 3 3 3 3 0 3 3 3 0 ...
##   .. ..$ 1: num [1:96] 3 3 3 3 3 0 3 3 3 3 ...
##   .. ..$ 2: num [1:96] 3 3 3 3 3 0 3 3 3 0 ...
##   .. ..$ 1: num [1:96] 3 3 3 3 3 0 3 3 3 3 ...
##   .. ..$ 2: num [1:96] 3 3 3 3 3 0 3 3 3 0 ...
##   .. ..$ 1: num [1:96] 3 3 3 3 3 0 3 3 3 3 ...
##   .. ..$ 2: num [1:96] 3 3 3 3 3 0 3 3 3 0 ...
##   .. ..$ 1: num [1:96] 3 3 3 3 3 0 3 3 3 3 ...
##   .. ..$ 2: num [1:96] 3 3 3 3 3 0 3 3 3 0 ...
##   .. ..$ 1: num [1:96] 3 3 3 3 3 0 3 3 3 3 ...
##   .. ..$ 2: num [1:96] 3 3 3 3 3 0 3 3 3 0 ...
##   ..$ X4598.0.0                                               :'data.frame': 6468 obs. of  12 variables:
##   .. ..$ 1: num [1:6468] 0 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6468] 0 0 1 1 0 0 0 0 1 0 ...
##   .. ..$ 1: num [1:6468] 0 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6468] 0 0 1 1 0 0 0 0 1 0 ...
##   .. ..$ 1: num [1:6468] 0 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6468] 0 0 1 1 0 0 0 0 1 0 ...
##   .. ..$ 1: num [1:6468] 0 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6468] 0 0 1 1 0 0 0 0 1 0 ...
##   .. ..$ 1: num [1:6468] 0 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6468] 0 0 1 1 0 0 0 0 1 0 ...
##   .. ..$ 1: num [1:6468] 0 0 1 1 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6468] 0 0 1 1 0 0 0 0 1 0 ...
##   ..$ X4598.2.0                                               :'data.frame': 214 obs. of  12 variables:
##   .. ..$ 1: num [1:214] 0 1 1 1 1 1 0 1 1 1 ...
##   .. ..$ 2: num [1:214] 0 1 0 0 1 0 1 1 0 0 ...
##   .. ..$ 1: num [1:214] 0 1 1 1 1 1 0 1 1 1 ...
##   .. ..$ 2: num [1:214] 0 1 0 0 1 0 1 1 0 0 ...
##   .. ..$ 1: num [1:214] 0 1 1 1 1 1 0 1 1 1 ...
##   .. ..$ 2: num [1:214] 0 1 0 0 1 0 1 1 0 0 ...
##   .. ..$ 1: num [1:214] 0 1 1 1 1 1 0 1 1 1 ...
##   .. ..$ 2: num [1:214] 0 1 0 0 1 0 1 1 0 0 ...
##   .. ..$ 1: num [1:214] 0 1 1 1 1 1 0 1 1 1 ...
##   .. ..$ 2: num [1:214] 0 1 0 0 1 0 1 1 0 0 ...
##   .. ..$ 1: num [1:214] 0 1 1 1 1 1 0 1 1 1 ...
##   .. ..$ 2: num [1:214] 0 1 0 0 1 0 1 1 0 0 ...
##   ..$ X4631.2.0                                               :'data.frame': 374 obs. of  12 variables:
##   .. ..$ 1: num [1:374] 0 0 0 1 0 1 1 1 0 1 ...
##   .. ..$ 2: num [1:374] 1 1 0 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:374] 0 0 0 1 0 1 1 1 0 1 ...
##   .. ..$ 2: num [1:374] 1 1 0 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:374] 0 0 0 1 0 1 1 1 0 1 ...
##   .. ..$ 2: num [1:374] 1 1 0 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:374] 0 0 0 1 0 1 1 1 0 1 ...
##   .. ..$ 2: num [1:374] 1 1 0 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:374] 0 0 0 1 0 1 1 1 0 1 ...
##   .. ..$ 2: num [1:374] 1 1 0 1 0 1 1 1 0 1 ...
##   .. ..$ 1: num [1:374] 0 0 0 1 0 1 1 1 0 1 ...
##   .. ..$ 2: num [1:374] 1 1 0 1 0 1 1 1 0 1 ...
##   ..$ X4653.0.0                                               :'data.frame': 6465 obs. of  12 variables:
##   .. ..$ 1: num [1:6465] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6465] 0 0 1 0 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6465] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6465] 0 0 1 0 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6465] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6465] 0 0 1 0 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6465] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6465] 0 0 1 0 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6465] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6465] 0 0 1 0 0 0 0 0 0 0 ...
##   .. ..$ 1: num [1:6465] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..$ 2: num [1:6465] 0 0 1 0 0 0 0 0 0 0 ...
##   ..$ X4653.2.0                                               :'data.frame': 224 obs. of  12 variables:
##   .. ..$ 1: num [1:224] 0 0 0 1 0 0 0 1 1 0 ...
##   .. ..$ 2: num [1:224] 0 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 1: num [1:224] 0 0 0 1 0 0 0 1 1 0 ...
##   .. ..$ 2: num [1:224] 0 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 1: num [1:224] 0 0 0 1 0 0 0 1 1 0 ...
##   .. ..$ 2: num [1:224] 0 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 1: num [1:224] 0 0 0 1 0 0 0 1 1 0 ...
##   .. ..$ 2: num [1:224] 0 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 1: num [1:224] 0 0 0 1 0 0 0 1 1 0 ...
##   .. ..$ 2: num [1:224] 0 0 0 0 1 0 0 0 1 0 ...
##   .. ..$ 1: num [1:224] 0 0 0 1 0 0 0 1 1 0 ...
##   .. ..$ 2: num [1:224] 0 0 0 0 1 0 0 0 1 0 ...
##   .. [list output truncated]
##  $ m              : num 12
##  $ where          : logi [1:9914, 1:106] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:9914] "1" "2" "3" "4" ...
##   .. ..$ : chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ blocks         :List of 106
##   ..$ lh_aparc_area__lh_lateralorbitofrontal_area             : chr "lh_aparc_area__lh_lateralorbitofrontal_area"
##   ..$ lh_aparc_area__lh_postcentral_area                      : chr "lh_aparc_area__lh_postcentral_area"
##   ..$ lh_aparc_area__lh_rostralmiddlefrontal_area             : chr "lh_aparc_area__lh_rostralmiddlefrontal_area"
##   ..$ lh_aparc_area__lh_superiorfrontal_area                  : chr "lh_aparc_area__lh_superiorfrontal_area"
##   ..$ lh_aparc_area__lh_superiortemporal_area                 : chr "lh_aparc_area__lh_superiortemporal_area"
##   ..$ lh_aparc_area__lh_WhiteSurfArea_area                    : chr "lh_aparc_area__lh_WhiteSurfArea_area"
##   ..$ lh_aparc.a2009s_area__lh_G_orbital_area                 : chr "lh_aparc.a2009s_area__lh_G_orbital_area"
##   ..$ lh_aparc.a2009s_area__lh_WhiteSurfArea_area             : chr "lh_aparc.a2009s_area__lh_WhiteSurfArea_area"
##   ..$ lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area    : chr "lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area"
##   ..$ lh_aparc.DKTatlas_area__lh_postcentral_area             : chr "lh_aparc.DKTatlas_area__lh_postcentral_area"
##   ..$ lh_aparc.DKTatlas_area__lh_precentral_area              : chr "lh_aparc.DKTatlas_area__lh_precentral_area"
##   ..$ lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area    : chr "lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area"
##   ..$ lh_aparc.DKTatlas_area__lh_superiorfrontal_area         : chr "lh_aparc.DKTatlas_area__lh_superiorfrontal_area"
##   ..$ lh_aparc.DKTatlas_area__lh_superiortemporal_area        : chr "lh_aparc.DKTatlas_area__lh_superiortemporal_area"
##   ..$ lh_aparc.DKTatlas_area__lh_insula_area                  : chr "lh_aparc.DKTatlas_area__lh_insula_area"
##   ..$ lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume: chr "lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume"
##   ..$ lh_aparc.pial_area__lh_lateralorbitofrontal_area        : chr "lh_aparc.pial_area__lh_lateralorbitofrontal_area"
##   ..$ lh_aparc.pial_area__lh_rostralmiddlefrontal_area        : chr "lh_aparc.pial_area__lh_rostralmiddlefrontal_area"
##   ..$ lh_aparc.pial_area__lh_superiorfrontal_area             : chr "lh_aparc.pial_area__lh_superiorfrontal_area"
##   ..$ lh_BA_exvivo_area__lh_BA3b_exvivo_area                  : chr "lh_BA_exvivo_area__lh_BA3b_exvivo_area"
##   ..$ lh_BA_exvivo_area__lh_WhiteSurfArea_area                : chr "lh_BA_exvivo_area__lh_WhiteSurfArea_area"
##   ..$ rh_aparc_area__rh_medialorbitofrontal_area              : chr "rh_aparc_area__rh_medialorbitofrontal_area"
##   ..$ rh_aparc_area__rh_rostralmiddlefrontal_area             : chr "rh_aparc_area__rh_rostralmiddlefrontal_area"
##   ..$ rh_aparc_area__rh_superiorfrontal_area                  : chr "rh_aparc_area__rh_superiorfrontal_area"
##   ..$ rh_aparc_area__rh_superiortemporal_area                 : chr "rh_aparc_area__rh_superiortemporal_area"
##   ..$ rh_aparc_area__rh_WhiteSurfArea_area                    : chr "rh_aparc_area__rh_WhiteSurfArea_area"
##   ..$ rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area            : chr "rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area"
##   ..$ rh_aparc.a2009s_area__rh_WhiteSurfArea_area             : chr "rh_aparc.a2009s_area__rh_WhiteSurfArea_area"
##   ..$ rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area    : chr "rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area"
##   ..$ rh_aparc.DKTatlas_area__rh_superiorfrontal_area         : chr "rh_aparc.DKTatlas_area__rh_superiorfrontal_area"
##   ..$ rh_aparc.DKTatlas_area__rh_superiortemporal_area        : chr "rh_aparc.DKTatlas_area__rh_superiortemporal_area"
##   ..$ rh_aparc.DKTatlas_area__rh_insula_area                  : chr "rh_aparc.DKTatlas_area__rh_insula_area"
##   ..$ rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume: chr "rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume"
##   ..$ rh_BA_exvivo_area__rh_WhiteSurfArea_area                : chr "rh_BA_exvivo_area__rh_WhiteSurfArea_area"
##   ..$ aseg__BrainSegVol                                       : chr "aseg__BrainSegVol"
##   ..$ aseg__BrainSegVolNotVent                                : chr "aseg__BrainSegVolNotVent"
##   ..$ aseg__BrainSegVolNotVentSurf                            : chr "aseg__BrainSegVolNotVentSurf"
##   ..$ aseg__lhCortexVol                                       : chr "aseg__lhCortexVol"
##   ..$ aseg__rhCortexVol                                       : chr "aseg__rhCortexVol"
##   ..$ aseg__CortexVol                                         : chr "aseg__CortexVol"
##   ..$ aseg__SubCortGrayVol                                    : chr "aseg__SubCortGrayVol"
##   ..$ aseg__TotalGrayVol                                      : chr "aseg__TotalGrayVol"
##   ..$ aseg__SupraTentorialVol                                 : chr "aseg__SupraTentorialVol"
##   ..$ aseg__SupraTentorialVolNotVent                          : chr "aseg__SupraTentorialVolNotVent"
##   ..$ aseg__SupraTentorialVolNotVentVox                       : chr "aseg__SupraTentorialVolNotVentVox"
##   ..$ aseg__MaskVol                                           : chr "aseg__MaskVol"
##   ..$ aseg__EstimatedTotalIntraCranialVol                     : chr "aseg__EstimatedTotalIntraCranialVol"
##   ..$ wmparc__wm.lh.lateralorbitofrontal                      : chr "wmparc__wm.lh.lateralorbitofrontal"
##   ..$ wmparc__wm.lh.superiortemporal                          : chr "wmparc__wm.lh.superiortemporal"
##   ..$ wmparc__wm.lh.insula                                    : chr "wmparc__wm.lh.insula"
##   ..$ X31.0.0                                                 : chr "X31.0.0"
##   ..$ X1170.0.0                                               : chr "X1170.0.0"
##   ..$ X1170.1.0                                               : chr "X1170.1.0"
##   ..$ X1170.2.0                                               : chr "X1170.2.0"
##   ..$ X1190.0.0                                               : chr "X1190.0.0"
##   ..$ X1190.1.0                                               : chr "X1190.1.0"
##   ..$ X1190.2.0                                               : chr "X1190.2.0"
##   ..$ X1200.0.0                                               : chr "X1200.0.0"
##   ..$ X1200.1.0                                               : chr "X1200.1.0"
##   ..$ X1200.2.0                                               : chr "X1200.2.0"
##   ..$ X1210.0.0                                               : chr "X1210.0.0"
##   ..$ X1210.2.0                                               : chr "X1210.2.0"
##   ..$ X1249.2.0                                               : chr "X1249.2.0"
##   ..$ X1618.0.0                                               : chr "X1618.0.0"
##   ..$ X1618.1.0                                               : chr "X1618.1.0"
##   ..$ X1618.2.0                                               : chr "X1618.2.0"
##   ..$ X1628.0.0                                               : chr "X1628.0.0"
##   ..$ X1930.0.0                                               : chr "X1930.0.0"
##   ..$ X1930.2.0                                               : chr "X1930.2.0"
##   ..$ X1950.0.0                                               : chr "X1950.0.0"
##   ..$ X1950.2.0                                               : chr "X1950.2.0"
##   ..$ X1970.0.0                                               : chr "X1970.0.0"
##   ..$ X1970.2.0                                               : chr "X1970.2.0"
##   ..$ X1980.0.0                                               : chr "X1980.0.0"
##   ..$ X1980.1.0                                               : chr "X1980.1.0"
##   ..$ X1980.2.0                                               : chr "X1980.2.0"
##   ..$ X2000.0.0                                               : chr "X2000.0.0"
##   ..$ X2000.2.0                                               : chr "X2000.2.0"
##   ..$ X2030.0.0                                               : chr "X2030.0.0"
##   ..$ X2030.2.0                                               : chr "X2030.2.0"
##   ..$ X2040.0.0                                               : chr "X2040.0.0"
##   ..$ X2040.1.0                                               : chr "X2040.1.0"
##   ..$ X2040.2.0                                               : chr "X2040.2.0"
##   ..$ X2050.0.0                                               : chr "X2050.0.0"
##   ..$ X2080.0.0                                               : chr "X2080.0.0"
##   ..$ X2080.2.0                                               : chr "X2080.2.0"
##   ..$ X2090.0.0                                               : chr "X2090.0.0"
##   ..$ X2090.1.0                                               : chr "X2090.1.0"
##   ..$ X2090.2.0                                               : chr "X2090.2.0"
##   ..$ X2877.0.0                                               : chr "X2877.0.0"
##   ..$ X2877.2.0                                               : chr "X2877.2.0"
##   ..$ X3446.0.0                                               : chr "X3446.0.0"
##   ..$ X4292.0.0                                               : chr "X4292.0.0"
##   ..$ X4292.2.0                                               : chr "X4292.2.0"
##   ..$ X4598.0.0                                               : chr "X4598.0.0"
##   ..$ X4598.2.0                                               : chr "X4598.2.0"
##   ..$ X4631.2.0                                               : chr "X4631.2.0"
##   ..$ X4653.0.0                                               : chr "X4653.0.0"
##   ..$ X4653.2.0                                               : chr "X4653.2.0"
##   .. [list output truncated]
##   ..- attr(*, "calltype")= Named chr [1:106] "type" "type" "type" "type" ...
##   .. ..- attr(*, "names")= chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ call           :List of 6
##   ..$ : language mice(data = tight106_UKBB_data, m = 2, method = "cart", maxit = 3, printFlag = T,      seed = 1234)
##   ..$ : language fun(x = result.1, y = result.2)
##   ..$ : language fun(x = accum, y = result.3)
##   ..$ : language fun(x = accum, y = result.4)
##   ..$ : language fun(x = accum, y = result.5)
##   ..$ : language fun(x = accum, y = result.6)
##  $ nmis           : Named int [1:106] 0 0 0 0 0 0 0 0 0 0 ...
##   ..- attr(*, "names")= chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ method         : Named chr [1:106] "" "" "" "" ...
##   ..- attr(*, "names")= chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ predictorMatrix: num [1:106, 1:106] 0 1 1 1 1 1 1 1 1 1 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##   .. ..$ : chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ visitSequence  : chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ formulas       :List of 106
##   ..$ lh_aparc_area__lh_lateralorbitofrontal_area             :Class 'formula'  language lh_aparc_area__lh_lateralorbitofrontal_area ~ lh_aparc_area__lh_postcentral_area +      lh_aparc_area__lh_rostral| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc_area__lh_postcentral_area                      :Class 'formula'  language lh_aparc_area__lh_postcentral_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_rostral| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc_area__lh_rostralmiddlefrontal_area             :Class 'formula'  language lh_aparc_area__lh_rostralmiddlefrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__l| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc_area__lh_superiorfrontal_area                  :Class 'formula'  language lh_aparc_area__lh_superiorfrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_pos| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc_area__lh_superiortemporal_area                 :Class 'formula'  language lh_aparc_area__lh_superiortemporal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_po| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc_area__lh_WhiteSurfArea_area                    :Class 'formula'  language lh_aparc_area__lh_WhiteSurfArea_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postc| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.a2009s_area__lh_G_orbital_area                 :Class 'formula'  language lh_aparc.a2009s_area__lh_G_orbital_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_po| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.a2009s_area__lh_WhiteSurfArea_area             :Class 'formula'  language lh_aparc.a2009s_area__lh_WhiteSurfArea_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__l| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area    :Class 'formula'  language lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_apar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_postcentral_area             :Class 'formula'  language lh_aparc.DKTatlas_area__lh_postcentral_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__l| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_precentral_area              :Class 'formula'  language lh_aparc.DKTatlas_area__lh_precentral_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area    :Class 'formula'  language lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_apar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_superiorfrontal_area         :Class 'formula'  language lh_aparc.DKTatlas_area__lh_superiorfrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_are| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_superiortemporal_area        :Class 'formula'  language lh_aparc.DKTatlas_area__lh_superiortemporal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_ar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_area__lh_insula_area                  :Class 'formula'  language lh_aparc.DKTatlas_area__lh_insula_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_pos| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume:Class 'formula'  language lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.pial_area__lh_lateralorbitofrontal_area        :Class 'formula'  language lh_aparc.pial_area__lh_lateralorbitofrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_ar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.pial_area__lh_rostralmiddlefrontal_area        :Class 'formula'  language lh_aparc.pial_area__lh_rostralmiddlefrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_ar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_aparc.pial_area__lh_superiorfrontal_area             :Class 'formula'  language lh_aparc.pial_area__lh_superiorfrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__l| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_BA_exvivo_area__lh_BA3b_exvivo_area                  :Class 'formula'  language lh_BA_exvivo_area__lh_BA3b_exvivo_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_pos| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ lh_BA_exvivo_area__lh_WhiteSurfArea_area                :Class 'formula'  language lh_BA_exvivo_area__lh_WhiteSurfArea_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_p| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc_area__rh_medialorbitofrontal_area              :Class 'formula'  language rh_aparc_area__rh_medialorbitofrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc_area__rh_rostralmiddlefrontal_area             :Class 'formula'  language rh_aparc_area__rh_rostralmiddlefrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__l| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc_area__rh_superiorfrontal_area                  :Class 'formula'  language rh_aparc_area__rh_superiorfrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_pos| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc_area__rh_superiortemporal_area                 :Class 'formula'  language rh_aparc_area__rh_superiortemporal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_po| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc_area__rh_WhiteSurfArea_area                    :Class 'formula'  language rh_aparc_area__rh_WhiteSurfArea_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postc| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area            :Class 'formula'  language rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.a2009s_area__rh_WhiteSurfArea_area             :Class 'formula'  language rh_aparc.a2009s_area__rh_WhiteSurfArea_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__l| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area    :Class 'formula'  language rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_apar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.DKTatlas_area__rh_superiorfrontal_area         :Class 'formula'  language rh_aparc.DKTatlas_area__rh_superiorfrontal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_are| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.DKTatlas_area__rh_superiortemporal_area        :Class 'formula'  language rh_aparc.DKTatlas_area__rh_superiortemporal_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_ar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.DKTatlas_area__rh_insula_area                  :Class 'formula'  language rh_aparc.DKTatlas_area__rh_insula_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_pos| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume:Class 'formula'  language rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ rh_BA_exvivo_area__rh_WhiteSurfArea_area                :Class 'formula'  language rh_BA_exvivo_area__rh_WhiteSurfArea_area ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_p| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__BrainSegVol                                       :Class 'formula'  language aseg__BrainSegVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_ap| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__BrainSegVolNotVent                                :Class 'formula'  language aseg__BrainSegVolNotVent ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcentral_area | __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__BrainSegVolNotVentSurf                            :Class 'formula'  language aseg__BrainSegVolNotVentSurf ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcentral_a| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__lhCortexVol                                       :Class 'formula'  language aseg__lhCortexVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_ap| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__rhCortexVol                                       :Class 'formula'  language aseg__rhCortexVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_ap| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__CortexVol                                         :Class 'formula'  language aseg__CortexVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_apar| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__SubCortGrayVol                                    :Class 'formula'  language aseg__SubCortGrayVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__TotalGrayVol                                      :Class 'formula'  language aseg__TotalGrayVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_a| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__SupraTentorialVol                                 :Class 'formula'  language aseg__SupraTentorialVol ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcentral_area +| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__SupraTentorialVolNotVent                          :Class 'formula'  language aseg__SupraTentorialVolNotVent ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcentral| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__SupraTentorialVolNotVentVox                       :Class 'formula'  language aseg__SupraTentorialVolNotVentVox ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcent| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__MaskVol                                           :Class 'formula'  language aseg__MaskVol ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ aseg__EstimatedTotalIntraCranialVol                     :Class 'formula'  language aseg__EstimatedTotalIntraCranialVol ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postce| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ wmparc__wm.lh.lateralorbitofrontal                      :Class 'formula'  language wmparc__wm.lh.lateralorbitofrontal ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcen| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ wmparc__wm.lh.superiortemporal                          :Class 'formula'  language wmparc__wm.lh.superiortemporal ~ lh_aparc_area__lh_lateralorbitofrontal_area +      lh_aparc_area__lh_postcentral| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ wmparc__wm.lh.insula                                    :Class 'formula'  language wmparc__wm.lh.insula ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X31.0.0                                                 :Class 'formula'  language X31.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area__| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1170.0.0                                               :Class 'formula'  language X1170.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1170.1.0                                               :Class 'formula'  language X1170.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1170.2.0                                               :Class 'formula'  language X1170.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1190.0.0                                               :Class 'formula'  language X1190.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1190.1.0                                               :Class 'formula'  language X1190.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1190.2.0                                               :Class 'formula'  language X1190.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1200.0.0                                               :Class 'formula'  language X1200.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1200.1.0                                               :Class 'formula'  language X1200.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1200.2.0                                               :Class 'formula'  language X1200.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1210.0.0                                               :Class 'formula'  language X1210.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1210.2.0                                               :Class 'formula'  language X1210.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1249.2.0                                               :Class 'formula'  language X1249.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1618.0.0                                               :Class 'formula'  language X1618.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1618.1.0                                               :Class 'formula'  language X1618.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1618.2.0                                               :Class 'formula'  language X1618.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1628.0.0                                               :Class 'formula'  language X1628.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1930.0.0                                               :Class 'formula'  language X1930.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1930.2.0                                               :Class 'formula'  language X1930.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1950.0.0                                               :Class 'formula'  language X1950.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1950.2.0                                               :Class 'formula'  language X1950.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1970.0.0                                               :Class 'formula'  language X1970.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1970.2.0                                               :Class 'formula'  language X1970.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1980.0.0                                               :Class 'formula'  language X1980.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1980.1.0                                               :Class 'formula'  language X1980.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X1980.2.0                                               :Class 'formula'  language X1980.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2000.0.0                                               :Class 'formula'  language X2000.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2000.2.0                                               :Class 'formula'  language X2000.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2030.0.0                                               :Class 'formula'  language X2030.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2030.2.0                                               :Class 'formula'  language X2030.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2040.0.0                                               :Class 'formula'  language X2040.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2040.1.0                                               :Class 'formula'  language X2040.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2040.2.0                                               :Class 'formula'  language X2040.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2050.0.0                                               :Class 'formula'  language X2050.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2080.0.0                                               :Class 'formula'  language X2080.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2080.2.0                                               :Class 'formula'  language X2080.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2090.0.0                                               :Class 'formula'  language X2090.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2090.1.0                                               :Class 'formula'  language X2090.1.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2090.2.0                                               :Class 'formula'  language X2090.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2877.0.0                                               :Class 'formula'  language X2877.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X2877.2.0                                               :Class 'formula'  language X2877.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X3446.0.0                                               :Class 'formula'  language X3446.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4292.0.0                                               :Class 'formula'  language X4292.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4292.2.0                                               :Class 'formula'  language X4292.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4598.0.0                                               :Class 'formula'  language X4598.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4598.2.0                                               :Class 'formula'  language X4598.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4631.2.0                                               :Class 'formula'  language X4631.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4653.0.0                                               :Class 'formula'  language X4653.0.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   ..$ X4653.2.0                                               :Class 'formula'  language X4653.2.0 ~ lh_aparc_area__lh_lateralorbitofrontal_area + lh_aparc_area__lh_postcentral_area +      lh_aparc_area| __truncated__ ...
##   .. .. ..- attr(*, ".Environment")=<environment: 0x0000000046bf2e78> 
##   .. [list output truncated]
##  $ post           : Named chr [1:106] "" "" "" "" ...
##   ..- attr(*, "names")= chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##  $ blots          :List of 106
##   ..$ lh_aparc_area__lh_lateralorbitofrontal_area             : list()
##   ..$ lh_aparc_area__lh_postcentral_area                      : list()
##   ..$ lh_aparc_area__lh_rostralmiddlefrontal_area             : list()
##   ..$ lh_aparc_area__lh_superiorfrontal_area                  : list()
##   ..$ lh_aparc_area__lh_superiortemporal_area                 : list()
##   ..$ lh_aparc_area__lh_WhiteSurfArea_area                    : list()
##   ..$ lh_aparc.a2009s_area__lh_G_orbital_area                 : list()
##   ..$ lh_aparc.a2009s_area__lh_WhiteSurfArea_area             : list()
##   ..$ lh_aparc.DKTatlas_area__lh_lateralorbitofrontal_area    : list()
##   ..$ lh_aparc.DKTatlas_area__lh_postcentral_area             : list()
##   ..$ lh_aparc.DKTatlas_area__lh_precentral_area              : list()
##   ..$ lh_aparc.DKTatlas_area__lh_rostralmiddlefrontal_area    : list()
##   ..$ lh_aparc.DKTatlas_area__lh_superiorfrontal_area         : list()
##   ..$ lh_aparc.DKTatlas_area__lh_superiortemporal_area        : list()
##   ..$ lh_aparc.DKTatlas_area__lh_insula_area                  : list()
##   ..$ lh_aparc.DKTatlas_volume__lh_lateralorbitofrontal_volume: list()
##   ..$ lh_aparc.pial_area__lh_lateralorbitofrontal_area        : list()
##   ..$ lh_aparc.pial_area__lh_rostralmiddlefrontal_area        : list()
##   ..$ lh_aparc.pial_area__lh_superiorfrontal_area             : list()
##   ..$ lh_BA_exvivo_area__lh_BA3b_exvivo_area                  : list()
##   ..$ lh_BA_exvivo_area__lh_WhiteSurfArea_area                : list()
##   ..$ rh_aparc_area__rh_medialorbitofrontal_area              : list()
##   ..$ rh_aparc_area__rh_rostralmiddlefrontal_area             : list()
##   ..$ rh_aparc_area__rh_superiorfrontal_area                  : list()
##   ..$ rh_aparc_area__rh_superiortemporal_area                 : list()
##   ..$ rh_aparc_area__rh_WhiteSurfArea_area                    : list()
##   ..$ rh_aparc.a2009s_area__rh_G.S_cingul.Ant_area            : list()
##   ..$ rh_aparc.a2009s_area__rh_WhiteSurfArea_area             : list()
##   ..$ rh_aparc.DKTatlas_area__rh_lateralorbitofrontal_area    : list()
##   ..$ rh_aparc.DKTatlas_area__rh_superiorfrontal_area         : list()
##   ..$ rh_aparc.DKTatlas_area__rh_superiortemporal_area        : list()
##   ..$ rh_aparc.DKTatlas_area__rh_insula_area                  : list()
##   ..$ rh_aparc.DKTatlas_volume__rh_lateralorbitofrontal_volume: list()
##   ..$ rh_BA_exvivo_area__rh_WhiteSurfArea_area                : list()
##   ..$ aseg__BrainSegVol                                       : list()
##   ..$ aseg__BrainSegVolNotVent                                : list()
##   ..$ aseg__BrainSegVolNotVentSurf                            : list()
##   ..$ aseg__lhCortexVol                                       : list()
##   ..$ aseg__rhCortexVol                                       : list()
##   ..$ aseg__CortexVol                                         : list()
##   ..$ aseg__SubCortGrayVol                                    : list()
##   ..$ aseg__TotalGrayVol                                      : list()
##   ..$ aseg__SupraTentorialVol                                 : list()
##   ..$ aseg__SupraTentorialVolNotVent                          : list()
##   ..$ aseg__SupraTentorialVolNotVentVox                       : list()
##   ..$ aseg__MaskVol                                           : list()
##   ..$ aseg__EstimatedTotalIntraCranialVol                     : list()
##   ..$ wmparc__wm.lh.lateralorbitofrontal                      : list()
##   ..$ wmparc__wm.lh.superiortemporal                          : list()
##   ..$ wmparc__wm.lh.insula                                    : list()
##   ..$ X31.0.0                                                 : list()
##   ..$ X1170.0.0                                               : list()
##   ..$ X1170.1.0                                               : list()
##   ..$ X1170.2.0                                               : list()
##   ..$ X1190.0.0                                               : list()
##   ..$ X1190.1.0                                               : list()
##   ..$ X1190.2.0                                               : list()
##   ..$ X1200.0.0                                               : list()
##   ..$ X1200.1.0                                               : list()
##   ..$ X1200.2.0                                               : list()
##   ..$ X1210.0.0                                               : list()
##   ..$ X1210.2.0                                               : list()
##   ..$ X1249.2.0                                               : list()
##   ..$ X1618.0.0                                               : list()
##   ..$ X1618.1.0                                               : list()
##   ..$ X1618.2.0                                               : list()
##   ..$ X1628.0.0                                               : list()
##   ..$ X1930.0.0                                               : list()
##   ..$ X1930.2.0                                               : list()
##   ..$ X1950.0.0                                               : list()
##   ..$ X1950.2.0                                               : list()
##   ..$ X1970.0.0                                               : list()
##   ..$ X1970.2.0                                               : list()
##   ..$ X1980.0.0                                               : list()
##   ..$ X1980.1.0                                               : list()
##   ..$ X1980.2.0                                               : list()
##   ..$ X2000.0.0                                               : list()
##   ..$ X2000.2.0                                               : list()
##   ..$ X2030.0.0                                               : list()
##   ..$ X2030.2.0                                               : list()
##   ..$ X2040.0.0                                               : list()
##   ..$ X2040.1.0                                               : list()
##   ..$ X2040.2.0                                               : list()
##   ..$ X2050.0.0                                               : list()
##   ..$ X2080.0.0                                               : list()
##   ..$ X2080.2.0                                               : list()
##   ..$ X2090.0.0                                               : list()
##   ..$ X2090.1.0                                               : list()
##   ..$ X2090.2.0                                               : list()
##   ..$ X2877.0.0                                               : list()
##   ..$ X2877.2.0                                               : list()
##   ..$ X3446.0.0                                               : list()
##   ..$ X4292.0.0                                               : list()
##   ..$ X4292.2.0                                               : list()
##   ..$ X4598.0.0                                               : list()
##   ..$ X4598.2.0                                               : list()
##   ..$ X4631.2.0                                               : list()
##   ..$ X4653.0.0                                               : list()
##   ..$ X4653.2.0                                               : list()
##   .. [list output truncated]
##  $ seed           : num 1234
##  $ iteration      : num 3
##  $ lastSeedValue  : int [1:626] 10403 544 -1464851769 -965606226 1156730613 -486092514 -188017815 -647554440 1348862306 307241230 ...
##  $ chainMean      : num [1:106, 1:3, 1:12] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...
##   ..- attr(*, "dimnames")=List of 3
##   .. ..$ : chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##   .. ..$ : chr [1:3] "1" "2" "3"
##   .. ..$ : chr [1:12] "Chain 1" "Chain 2" "Chain 3" "Chain 4" ...
##  $ chainVar       : num [1:106, 1:3, 1:12] NA NA NA NA NA NA NA NA NA NA ...
##   ..- attr(*, "dimnames")=List of 3
##   .. ..$ : chr [1:106] "lh_aparc_area__lh_lateralorbitofrontal_area" "lh_aparc_area__lh_postcentral_area" "lh_aparc_area__lh_rostralmiddlefrontal_area" "lh_aparc_area__lh_superiorfrontal_area" ...
##   .. ..$ : chr [1:3] "1" "2" "3"
##   .. ..$ : chr [1:12] "Chain 1" "Chain 2" "Chain 3" "Chain 4" ...
##  $ loggedEvents   :'data.frame': 336 obs. of  5 variables:
##   ..$ it  : num [1:336] 0 0 0 0 0 0 1 1 1 1 ...
##   ..$ im  : num [1:336] 0 0 0 0 0 0 1 1 1 1 ...
##   ..$ dep : chr [1:336] "" "" "" "" ...
##   ..$ meth: chr [1:336] "collinear" "collinear" "collinear" "collinear" ...
##   ..$ out : chr [1:336] "lh_aparc.a2009s_area__lh_WhiteSurfArea_area" "lh_BA_exvivo_area__lh_WhiteSurfArea_area" "rh_aparc.a2009s_area__rh_WhiteSurfArea_area" "rh_BA_exvivo_area__rh_WhiteSurfArea_area" ...
##  $ version        :Classes 'package_version', 'numeric_version'  hidden list of 1
##   ..$ : int [1:3] 3 14 0
##  $ date           : Date[1:1], format: "2022-01-18"
##  - attr(*, "class")= chr "mids"
# save(imp_tight106_UKBB_data, file = "C:/Users/Dinov/Desktop/imp_tight106_UKBB_data.Rdata")
# test <- load(file = "C:/Users/Dinov/Desktop/imp_tight106_UKBB_data.Rdata")

# imp_tight106_UKBB_data <- mice(tight106_UKBB_data, m=2,maxit=3, printFlag=T, seed=1234, method = 'cart')
### MICE NOTE: When the column features have a number of unbalanced factors, these categorical variables are transformed into dummy indicator-variables.
### There is a high probability that the resulting columns may be linear combinations of one-another. 
### The default MICE imputation methods, linear regression, may not be able to solve the linear matrix equations due to matrix low rank, i.e., matrices may cannot be inverted causing errors like "system is computationally singular". RTo solve that problem, we can change the method to "cart". 
### Also use seed before/during imputation for reproducible results.
comp_imp_tight106_UKBB_data <- as.matrix(complete(imp_tight106_UKBB_data), 
                                         dimnames = list(NULL, colnames(tight106_UKBB_data)))

################################################
##  2. Split the UKBB into 9 epochs
# First normalize all 50 derived NI biomarkers *using scale* as the NI biomarkers have vastly different distributions
for (i in 1:50) {
  comp_imp_tight106_UKBB_data[, i] <- scale(comp_imp_tight106_UKBB_data[, i])
}

# Next configure the 11 epochs
comp_imp_tight106_UKBB_data <- comp_imp_tight106_UKBB_data[1:9900, ] # remove the last 14 cases to make the 11 epochs of size 900 observations yeach
is.matrix(comp_imp_tight106_UKBB_data); dim(comp_imp_tight106_UKBB_data)
## [1] TRUE
## [1] 9900  106
dim(comp_imp_tight106_UKBB_data) <- c(11, 900, dim(comp_imp_tight106_UKBB_data)[2])
dim(comp_imp_tight106_UKBB_data)
## [1]  11 900 106
# double check epoch split worked 
# identical(comp_imp_tight106_UKBB_data[10, 900, 12], as.matrix(complete(imp_tight106_UKBB_data))[10*900, 12])
epochs_tight106_UKBB_data_1 <- comp_imp_tight106_UKBB_data[1, , ]; dim(epochs_tight106_UKBB_data_1)
## [1] 900 106
# 3. Transform all 9 epochs (Big datasets/signals) to k-space (Fourier domain)
x1 <- c(1:900)
FT_epochs_tight106_UKBB <- array(complex(), c(11, 900, dim(comp_imp_tight106_UKBB_data)[3]))
mag_FT_epochs_tight106_UKBB <- array(complex(), c(11, 900, dim(comp_imp_tight106_UKBB_data)[3]))
phase_FT_epochs_tight106_UKBB <- array(complex(), c(11, 900, dim(comp_imp_tight106_UKBB_data)[3]))
for (i in 1:11) {
  FT_epochs_tight106_UKBB[i, , ] <- fft(comp_imp_tight106_UKBB_data[i, , ])
  X2 <- FT_epochs_tight106_UKBB[i, , ]
  # plot(fftshift1D(log(Re(X2)+2)), main = "log(fftshift1D(Re(FFT(tight106_UKBB))))") 
  mag_FT_epochs_tight106_UKBB[i, , ] <- sqrt(Re(X2)^2+Im(X2)^2); 
  # plot(log(fftshift1D(Re(X2_mag))), main = "log(Magnitude(FFT(tight106_UKBB)))") 
  phase_FT_epochs_tight106_UKBB[i, , ] <- atan2(Im(X2), Re(X2)); 
  # plot(fftshift1D(X2_phase), main = "Shift(Phase(FFT(tight106_UKBB)))")
}

# Compute the Average Phase of all 11 epochs (this will be needed later to confirm better data analytics)
avgPhase_FT_epochs_tight106_UKBB <- apply(phase_FT_epochs_tight106_UKBB, c(2,3), mean)
dim(avgPhase_FT_epochs_tight106_UKBB)
## [1] 900 106
### Test the process to confirm calculations
# X2<-FT_epochs_tight106_UKBB[1,,];X2_mag<-mag_FT_epochs_tight106_UKBB[1,,];X2_phase<-phase_FT_epochs_tight106_UKBB[1,,]
# Real2 = X2_mag * cos(X2_phase)
# Imaginary2 = X2_mag * sin(X2_phase)
# man_hat_X2 = Re(fft(Real2 + 1i*Imaginary2, inverse = T)/length(X2))
# ifelse(abs(man_hat_X2[5,10] - comp_imp_tight106_UKBB_data[1, 5, 10]) < 0.001, "Perfect Syntesis", "Problems!!!")
#######

##### 4. Invert back to spacetime the epochs_tight106_UKBB_data_1 signal with NIL and Average phase
# Start with Nil Phase
Real = mag_FT_epochs_tight106_UKBB[1, , ] * cos(0)  # cos(mag_FT_epochs_tight106_UKBB[1, , ])
Imaginary = mag_FT_epochs_tight106_UKBB[1, , ] * sin(0)   # sin(mag_FT_epochs_tight106_UKBB[1, , ])
ift_NilPhase_X2mag = Re(fft(Real+1i*Imaginary, inverse = T)/length(mag_FT_epochs_tight106_UKBB[1,,]))
# display(ift_NilPhase_X2mag, method = "raster")
# dim(ift_NilPhase_X2mag); View(ift_NilPhase_X2mag); # compare to View(comp_imp_tight106_UKBB_data[1, , ])

# Next, synthesize the data using Average Phase
Real_Avg = mag_FT_epochs_tight106_UKBB[1, , ] * cos(avgPhase_FT_epochs_tight106_UKBB)
Imaginary_Avg = mag_FT_epochs_tight106_UKBB[1, , ] * sin(avgPhase_FT_epochs_tight106_UKBB)
ift_AvgPhase_X2mag = Re(fft(Real_Avg+1i*Imaginary_Avg, inverse = T)/length(mag_FT_epochs_tight106_UKBB[1,,]))
# is.complex(ift_AvgPhase_X2mag); dim(ift_AvgPhase_X2mag)

# To Transform the entire UKBB data to k-space (Fourier domain)
# library(EBImage)
#FT_UKBB_data <- fft(comp_imp_tight106_UKBB_data)
#X2 <- FT_UKBB_data  # display(FT_UKBB_data, method = "raster") 
#mag_FT_UKBB_data <- sqrt(Re(X2)^2+Im(X2)^2) 
###  # plot(log(fftshift1D(Re(X2_mag))), main = "log(Magnitude(FFT(timeseries)))") 
#phase_FT_UKBB_data <- atan2(Im(X2), Re(X2)) 
### Test the process to confirm calculations
# X2<-FT_UKBB_data; X2_mag <- mag_FT_UKBB_data; X2_phase<-phase_FT_UKBB_data
# Real2 = X2_mag * cos(X2_phase)
# Imaginary2 = X2_mag * sin(X2_phase)
# man_hat_X2 = Re(fft(Real2 + 1i*Imaginary2, inverse = T)/length(X2))
# ifelse(abs(man_hat_X2[5,10] - comp_imp_tight106_UKBB_data[5, 10]) < 0.001, "Perfect Syntesis", "Problems!!!")
#######
# Then we can Invert back the complete UKBB FT data into spacetime using nil phase
#Real = mag_FT_UKBB_data * cos(0)  # cos(phase_FT_UKBB_data)
#Imaginary = mag_FT_UKBB_data * sin(0)   # sin(phase_FT_UKBB_data)
#ift_NilPhase_X2mag = Re(fft(Real+1i*Imaginary, inverse = T)/length(FT_UKBB_data))
# display(ift_NilPhase_X2mag, method = "raster")
# dim(ift_NilPhase_X2mag); View(ift_NilPhase_X2mag); # compare to View(aqi_data1)
#summary(comp_imp_tight106_UKBB_data); summary(ift_NilPhase_X2mag)

# 5. Epoch 1: Perform Random Forest prediction (based on ift_TruePhase_X2mag==Original==epochs_tight106_UKBB_data_1) of:
##### Ever depressed for a whole week 1 #########################################
library("randomForest")
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
# y_pheno <- comp_imp_tight106_UKBB_data[,"X4598.2.0"] ### Ever depressed for a whole week 1
# y_pheno <- as.factor(y_pheno)
colnames(epochs_tight106_UKBB_data_1) <- colnames(tight106_UKBB_data)
set.seed(1234)
rf_depressed <- randomForest(as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"]) ~ . , 
          data=epochs_tight106_UKBB_data_1[ , !(colnames(epochs_tight106_UKBB_data_1) %in% c("X4598.0.0", "X4598.2.0"))])
rf_depressed
## 
## Call:
##  randomForest(formula = as.factor(epochs_tight106_UKBB_data_1[,      "X4598.2.0"]) ~ ., data = epochs_tight106_UKBB_data_1[, !(colnames(epochs_tight106_UKBB_data_1) %in%      c("X4598.0.0", "X4598.2.0"))]) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##         OOB estimate of  error rate: 21.78%
## Confusion matrix:
##     0   1 class.error
## 0 370  72   0.1628959
## 1 124 334   0.2707424
pred1 = predict(rf_depressed, type="class")
confusionMatrix(pred1, as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"]))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 370 124
##          1  72 334
##                                           
##                Accuracy : 0.7822          
##                  95% CI : (0.7538, 0.8088)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.5652          
##                                           
##  Mcnemar's Test P-Value : 0.0002696       
##                                           
##             Sensitivity : 0.8371          
##             Specificity : 0.7293          
##          Pos Pred Value : 0.7490          
##          Neg Pred Value : 0.8227          
##              Prevalence : 0.4911          
##          Detection Rate : 0.4111          
##    Detection Prevalence : 0.5489          
##       Balanced Accuracy : 0.7832          
##                                           
##        'Positive' Class : 0               
## 
############## Accuracy : 0.7911 #############################

##### plot a simple decision tree
library(rpart); library(rpart.plot)
## there is an error in installing the rattle package
library(rattle)  ## this is for the fancyRpartPlot
## Loading required package: tibble
## Warning: package 'tibble' was built under R version 4.1.2
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
## 
## Attaching package: 'rattle'
## The following object is masked from 'package:randomForest':
## 
##     importance
label <- as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"])
data1 <- as.data.frame(epochs_tight106_UKBB_data_1[ , !(colnames(epochs_tight106_UKBB_data_1) %in%
                      c("X4598.0.0", "X4598.2.0", "cluster_2_cluster"))])
data1$label <- label
depress_tree <- rpart(label ~ ., control=rpart.control(minsplit=30, cp=0.001, maxdepth=30), data=data1) 
rpart.plot(depress_tree, type = 4, extra = 1, clip.right.labs = F, tweak=4)
## Warning: labs do not fit even at cex 0.15, there may be some overplotting

pred1 = predict(depress_tree, type="class")
# table(pred1, label)
library(caret)
confusionMatrix(pred1, label)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 367  55
##          1  75 403
##                                           
##                Accuracy : 0.8556          
##                  95% CI : (0.8309, 0.8779)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.7108          
##                                           
##  Mcnemar's Test P-Value : 0.09563         
##                                           
##             Sensitivity : 0.8303          
##             Specificity : 0.8799          
##          Pos Pred Value : 0.8697          
##          Neg Pred Value : 0.8431          
##              Prevalence : 0.4911          
##          Detection Rate : 0.4078          
##    Detection Prevalence : 0.4689          
##       Balanced Accuracy : 0.8551          
##                                           
##        'Positive' Class : 0               
## 
########################### Accuracy : 0.8511  ##############################

### Prune decision tree
prune_depress_tree <- prune(depress_tree,
                            cp=depress_tree$cptable[which.min(depress_tree$cptable[,"xerror"]),"CP"])

# plot the pruned tree
plot(prune_depress_tree, uniform=TRUE, main="Pruned UKBB Decision Tree")
text(prune_depress_tree, use.n=TRUE, all=TRUE, cex=.8)

rpart.plot(prune_depress_tree, type = 4, extra = 1, clip.right.labs = F, tweak=2)

pred2 = predict(prune_depress_tree, type="class")
confusionMatrix(pred2, label)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 391 128
##          1  51 330
##                                           
##                Accuracy : 0.8011          
##                  95% CI : (0.7735, 0.8267)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6033          
##                                           
##  Mcnemar's Test P-Value : 1.343e-08       
##                                           
##             Sensitivity : 0.8846          
##             Specificity : 0.7205          
##          Pos Pred Value : 0.7534          
##          Neg Pred Value : 0.8661          
##              Prevalence : 0.4911          
##          Detection Rate : 0.4344          
##    Detection Prevalence : 0.5767          
##       Balanced Accuracy : 0.8026          
##                                           
##        'Positive' Class : 0               
## 
######################### Accuracy : 0.7867 ###############################


###### 6. FOR the COMPLETE UKBB data: plot a simple decision tree
#library(rpart); library(rpart.plot)
#library(rattle)  ## this is for the fancyRpartPlot
dim(comp_imp_tight106_UKBB_data) <- c(11*900, dim(comp_imp_tight106_UKBB_data)[3])
colnames(comp_imp_tight106_UKBB_data) <- colnames(tight106_UKBB_data)
label3 <- as.factor(comp_imp_tight106_UKBB_data[ ,"X4598.2.0"])
data3 <- as.data.frame(comp_imp_tight106_UKBB_data[ , !(colnames(comp_imp_tight106_UKBB_data) %in%
                      c("X4598.0.0", "X4598.2.0", "cluster_2_cluster"))])
depress_tree3 <- rpart(label3 ~ ., control=rpart.control(minsplit=30, cp=0.001, maxdepth=30), data=data3) 
rpart.plot(depress_tree3, type = 4, extra = 1, clip.right.labs = F, tweak=2)

pred3 = predict(depress_tree3, type="class")
confusionMatrix(pred3, label3)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 4355 1214
##          1  532 3799
##                                          
##                Accuracy : 0.8236         
##                  95% CI : (0.816, 0.8311)
##     No Information Rate : 0.5064         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.6478         
##                                          
##  Mcnemar's Test P-Value : < 2.2e-16      
##                                          
##             Sensitivity : 0.8911         
##             Specificity : 0.7578         
##          Pos Pred Value : 0.7820         
##          Neg Pred Value : 0.8772         
##              Prevalence : 0.4936         
##          Detection Rate : 0.4399         
##    Detection Prevalence : 0.5625         
##       Balanced Accuracy : 0.8245         
##                                          
##        'Positive' Class : 0              
## 
#################### Accuracy : 0.8238 ###########################

### Prune decision tree
prune_depress_tree3 <- prune(depress_tree3,
                            cp=depress_tree3$cptable[which.min(depress_tree3$cptable[,"xerror"]),"CP"])
rpart.plot(prune_depress_tree3, type = 4, extra = 1, clip.right.labs = F, tweak=2,  main="Pruned UKBB Decision Tree")

pred3 = predict(prune_depress_tree3, type="class")
confusionMatrix(pred3, label3)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 4390 1359
##          1  497 3654
##                                           
##                Accuracy : 0.8125          
##                  95% CI : (0.8047, 0.8202)
##     No Information Rate : 0.5064          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6258          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
##                                           
##             Sensitivity : 0.8983          
##             Specificity : 0.7289          
##          Pos Pred Value : 0.7636          
##          Neg Pred Value : 0.8803          
##              Prevalence : 0.4936          
##          Detection Rate : 0.4434          
##    Detection Prevalence : 0.5807          
##       Balanced Accuracy : 0.8136          
##                                           
##        'Positive' Class : 0               
## 
#################### Accuracy : 0.8132 ###########################

# RF
rf_depressed_Complete <- randomForest(label3 ~ . ,  data=data3)
rf_depressed_Complete
## 
## Call:
##  randomForest(formula = label3 ~ ., data = data3) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##         OOB estimate of  error rate: 19.46%
## Confusion matrix:
##      0    1 class.error
## 0 4231  656   0.1342337
## 1 1271 3742   0.2535408
pred3 = predict(rf_depressed_Complete, type="class")
confusionMatrix(pred3, label3)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 4231 1271
##          1  656 3742
##                                           
##                Accuracy : 0.8054          
##                  95% CI : (0.7974, 0.8131)
##     No Information Rate : 0.5064          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6113          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
##                                           
##             Sensitivity : 0.8658          
##             Specificity : 0.7465          
##          Pos Pred Value : 0.7690          
##          Neg Pred Value : 0.8508          
##              Prevalence : 0.4936          
##          Detection Rate : 0.4274          
##    Detection Prevalence : 0.5558          
##       Balanced Accuracy : 0.8061          
##                                           
##        'Positive' Class : 0               
## 
# In random forests, there is no need for cross-validation or a separate test set to get an unbiased estimate of the test set error. The out-of-bag (oob) error estimate is internally computed during the run... In particular, when newdata is not provided, the *predict.randomForest()==predict()* method automatically returns the out-of-bag prediction.
##################### Accuracy : 0.808 #########################


# 7. Perform Random Forest prediction (based on ift_AvgPhase_X2mag) of:
##### Ever depressed for a whole week 1 #########################################
# library("randomForest")
# y_pheno <- comp_imp_tight106_UKBB_data[,"X4598.2.0"] ### Ever depressed for a whole week 1
# y_pheno <- as.factor(y_pheno)
label2 <- as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"]) 
# use the real outcome not synthesized (as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"]))
colnames(ift_AvgPhase_X2mag) <- colnames(tight106_UKBB_data)
data2 <- as.data.frame(ift_AvgPhase_X2mag[ , !(colnames(ift_AvgPhase_X2mag) %in%
                      c("X4598.0.0", "X4598.2.0", "cluster_2_cluster"))])
set.seed(1234)
rf_depressed_AvgPhase <- randomForest(label2 ~ . , importance=T, nodesize=30, mtry=100, ntree= 1000, data=data2)
rf_depressed_AvgPhase
## 
## Call:
##  randomForest(formula = label2 ~ ., data = data2, importance = T,      nodesize = 30, mtry = 100, ntree = 1000) 
##                Type of random forest: classification
##                      Number of trees: 1000
## No. of variables tried at each split: 100
## 
##         OOB estimate of  error rate: 48.67%
## Confusion matrix:
##     0   1 class.error
## 0 218 224   0.5067873
## 1 214 244   0.4672489
pred1_AvgPhase <- predict(rf_depressed_AvgPhase, type="class")
confusionMatrix(pred1_AvgPhase, label2)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 218 214
##          1 224 244
##                                           
##                Accuracy : 0.5133          
##                  95% CI : (0.4801, 0.5465)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : 0.4078          
##                                           
##                   Kappa : 0.026           
##                                           
##  Mcnemar's Test P-Value : 0.6672          
##                                           
##             Sensitivity : 0.4932          
##             Specificity : 0.5328          
##          Pos Pred Value : 0.5046          
##          Neg Pred Value : 0.5214          
##              Prevalence : 0.4911          
##          Detection Rate : 0.2422          
##    Detection Prevalence : 0.4800          
##       Balanced Accuracy : 0.5130          
##                                           
##        'Positive' Class : 0               
## 
##### plot a simple decision tree
# library(rpart); library(rpart.plot)
## there is an error in installing the rattle package
# library(rattle)  ## this is for the fancyRpartPlot
set.seed(1234)
depress_tree_AvgPhase <- rpart(label2 ~ ., control=rpart.control(minsplit=30,cp=0.001,maxdepth=30),data=data2) 
pred1_AvgPhase <- predict(depress_tree_AvgPhase, type="class")
# library(caret)
confusionMatrix(pred1_AvgPhase, label2)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 337  86
##          1 105 372
##                                           
##                Accuracy : 0.7878          
##                  95% CI : (0.7596, 0.8141)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.5751          
##                                           
##  Mcnemar's Test P-Value : 0.1928          
##                                           
##             Sensitivity : 0.7624          
##             Specificity : 0.8122          
##          Pos Pred Value : 0.7967          
##          Neg Pred Value : 0.7799          
##              Prevalence : 0.4911          
##          Detection Rate : 0.3744          
##    Detection Prevalence : 0.4700          
##       Balanced Accuracy : 0.7873          
##                                           
##        'Positive' Class : 0               
## 
rpart.plot(depress_tree_AvgPhase, type = 2, extra = 1, clip.right.labs = F, varlen=5, faclen=5, tweak=4)

################### Accuracy : 0.7956 #############################

### Prune decision tree
prune_depress_tree_AvgPhase <- prune(depress_tree_AvgPhase,
        cp=depress_tree_AvgPhase$cptable[which.min(depress_tree_AvgPhase$cptable[,"xerror"]),"CP"]/(1.5))
# plot the pruned tree
#plot(prune_depress_tree_AvgPhase, uniform=TRUE, main="Pruned UKBB Decision Tree (Avg-Phase Synthesis)")
#text(prune_depress_tree_AvgPhase, use.n=TRUE, all=TRUE, cex=.8)
rpart.plot(prune_depress_tree_AvgPhase, type = 4, extra = 1, clip.right.labs = F, varlen=5, faclen=5, tweak=1.5)

pred2_AvgPhase = predict(prune_depress_tree_AvgPhase, type="class")
confusionMatrix(pred2_AvgPhase, label2)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 340  95
##          1 102 363
##                                           
##                Accuracy : 0.7811          
##                  95% CI : (0.7526, 0.8077)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.562           
##                                           
##  Mcnemar's Test P-Value : 0.669           
##                                           
##             Sensitivity : 0.7692          
##             Specificity : 0.7926          
##          Pos Pred Value : 0.7816          
##          Neg Pred Value : 0.7806          
##              Prevalence : 0.4911          
##          Detection Rate : 0.3778          
##    Detection Prevalence : 0.4833          
##       Balanced Accuracy : 0.7809          
##                                           
##        'Positive' Class : 0               
## 
# 8. Perform Random Forest prediction (based on ift_NilPhase_X2mag) of:
##### Ever depressed for a whole week 1 #########################################
# library("randomForest")
# y_pheno <- comp_imp_tight106_UKBB_data[,"X4598.2.0"] ### Ever depressed for a whole week 1
# y_pheno <- as.factor(y_pheno)
label2 <- as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"]) 
# use the real outcome not synthesized (as.factor(epochs_tight106_UKBB_data_1[ ,"X4598.2.0"]))
colnames(ift_NilPhase_X2mag) <- colnames(tight106_UKBB_data)
data2 <- as.data.frame(ift_NilPhase_X2mag[ , !(colnames(ift_NilPhase_X2mag) %in%
                      c("X4598.0.0", "X4598.2.0", "cluster_2_cluster"))])
set.seed(1234)
rf_depressed_NilPhase <- randomForest(label2 ~ . , importance=T, nodesize=30, mtry=100, ntree= 1000, data=data2)
rf_depressed_NilPhase
## 
## Call:
##  randomForest(formula = label2 ~ ., data = data2, importance = T,      nodesize = 30, mtry = 100, ntree = 1000) 
##                Type of random forest: classification
##                      Number of trees: 1000
## No. of variables tried at each split: 100
## 
##         OOB estimate of  error rate: 52.33%
## Confusion matrix:
##     0   1 class.error
## 0 199 243   0.5497738
## 1 228 230   0.4978166
pred1_NilPhase <- predict(rf_depressed_NilPhase, type="class")
confusionMatrix(pred1_NilPhase, label2)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 199 228
##          1 243 230
##                                           
##                Accuracy : 0.4767          
##                  95% CI : (0.4436, 0.5099)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : 0.9754          
##                                           
##                   Kappa : -0.0476         
##                                           
##  Mcnemar's Test P-Value : 0.5189          
##                                           
##             Sensitivity : 0.4502          
##             Specificity : 0.5022          
##          Pos Pred Value : 0.4660          
##          Neg Pred Value : 0.4863          
##              Prevalence : 0.4911          
##          Detection Rate : 0.2211          
##    Detection Prevalence : 0.4744          
##       Balanced Accuracy : 0.4762          
##                                           
##        'Positive' Class : 0               
## 
##### plot a simple decision tree
# library(rpart); library(rpart.plot)
## there is an error in installing the rattle package
# library(rattle)  ## this is for the fancyRpartPlot
set.seed(1234)
depress_tree_NilPhase <- rpart(label2 ~ ., control=rpart.control(minsplit=30,cp=0.001,maxdepth=30),data=data2) 
pred1_NilPhase <- predict(depress_tree_NilPhase, type="class")
# library(caret)
confusionMatrix(pred1_NilPhase, label2)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 337  77
##          1 105 381
##                                         
##                Accuracy : 0.7978        
##                  95% CI : (0.77, 0.8236)
##     No Information Rate : 0.5089        
##     P-Value [Acc > NIR] : < 2e-16       
##                                         
##                   Kappa : 0.595         
##                                         
##  Mcnemar's Test P-Value : 0.04535       
##                                         
##             Sensitivity : 0.7624        
##             Specificity : 0.8319        
##          Pos Pred Value : 0.8140        
##          Neg Pred Value : 0.7840        
##              Prevalence : 0.4911        
##          Detection Rate : 0.3744        
##    Detection Prevalence : 0.4600        
##       Balanced Accuracy : 0.7972        
##                                         
##        'Positive' Class : 0             
## 
rpart.plot(depress_tree_NilPhase, type = 2, extra = 1, clip.right.labs = F, varlen=5, faclen=5, tweak=2)

################### Accuracy : 0.79  #############################

### Prune decision tree
prune_depress_tree_NilPhase <- prune(depress_tree_NilPhase,
            cp=depress_tree_NilPhase$cptable[which.min(depress_tree_NilPhase$cptable[,"xerror"]),"CP"]/(1.5))
# plot the pruned tree
#plot(prune_depress_tree_NilPhase, uniform=TRUE, main="Pruned UKBB Decision Tree (Nil-Phase Synthesis)")
#text(prune_depress_tree_NilPhase, use.n=TRUE, all=TRUE, cex=.8)
rpart.plot(prune_depress_tree_NilPhase, type = 4, extra = 1, clip.right.labs = F, varlen=5, faclen=5, tweak=2)

pred2_NilPhase = predict(prune_depress_tree_AvgPhase, type="class")
confusionMatrix(pred2_NilPhase, label2)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 340  95
##          1 102 363
##                                           
##                Accuracy : 0.7811          
##                  95% CI : (0.7526, 0.8077)
##     No Information Rate : 0.5089          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.562           
##                                           
##  Mcnemar's Test P-Value : 0.669           
##                                           
##             Sensitivity : 0.7692          
##             Specificity : 0.7926          
##          Pos Pred Value : 0.7816          
##          Neg Pred Value : 0.7806          
##              Prevalence : 0.4911          
##          Detection Rate : 0.3778          
##    Detection Prevalence : 0.4833          
##       Balanced Accuracy : 0.7809          
##                                           
##        'Positive' Class : 0               
## 
# 9. Compare the analytics results from #3, ..., #8!
# Compare the original against nil-phase and avg-phase synthesized data
origNilNil_6rows_Compare <- rbind(head(epochs_tight106_UKBB_data_1), head(ift_NilPhase_X2mag), head(ift_AvgPhase_X2mag))
x1 <- 1:dim(epochs_tight106_UKBB_data_1)[2]
orig.mean <- apply(epochs_tight106_UKBB_data_1, 2, mean)
nilPhase.mean <- apply(ift_NilPhase_X2mag, 2, mean)
avgPhase.mean <- apply(ift_AvgPhase_X2mag, 2, mean)

plot(x1, orig.mean, main = "Comparing original UKBB against nil-phase and avg-phase synthesized data",
     col="green", lwd = 3, type="l", lty=1, xlab = "Features", ylab = "Averages across cases")
lines(x1, nilPhase.mean, col = "red", lwd = 3, lty=1)
lines(x1, avgPhase.mean, col = "blue", lwd = 3, lty=1)
legend("top", bty="n", legend=c(
  sprintf("Original"), sprintf("Nil-Phase Reconstruction"), 
  sprintf("Average-Phase Reconstruction")), 
  col=c("green", "red", "blue"), lty=c(1,1,1), lwd=c(3,3,3), cex=0.9)

stopCluster(clustUKBB)

################### Plot_ly Figure 6.15
time <- x1[1:length(orig.mean)]
p <- plot_ly()
p <- add_lines(p, x=~time,  y=~orig.mean, 
               name = "Original.Mean", type = 'scatter', mode = 'lines', 
               hoverinfo = 'name', line=list(color='green', width=4))
p <- add_lines(p, x=~time, y=~nilPhase.mean, 
               name = "ift_NilPhase.Mean", type = 'scatter', mode = 'lines', 
               hoverinfo = 'name', 
               line=list(color='red', width = 2))
p <- add_lines(p, x=~time, y=~avgPhase.mean, 
               name = "ift_AvgPhase.Mean", type = 'scatter', mode = 'lines', 
               hoverinfo = 'name', 
               line=list(color='blue', width = 2)) %>%
  layout(xaxis = list(range = c(0,108), title="Features"),
    yaxis = list(range = c(0,6), title="Averages across cases"),
    title=sprintf('Comparison:  Corr(Real, NilPhase) = %s; Comparison:  Corr(Real, AvgPhase) = %s',
                  format(cor(orig.mean, nilPhase.mean), digits=3),
                  format(cor(orig.mean, avgPhase.mean), digits=3)),
    legend = list(orientation = "h",   # show entries horizontally
                     xanchor = "center",  # use center of legend as anchor
                     x = 0.5, y=-0.1,
                     size = 30))      
p

As we have the benefit of hind-side, the prior study Predictive Big Data Analytics using the UK Biobank Data had identified the most salient derived neuroimaging and clinical biomarkers (\(k=107\)) in this study, including the physician identified clinical outcomes and the computed phenotypes using unsupervised machine learning methods. Therefore, for simplicity, this demonstration only focuses on these features, without a previous feature-selection preprocessing step. We are examining the effects of the kime phase on the scientific inference.

Note that averaging the phases in the Fourier domain assumes that either we have a very large number of samples that effectively span the range of kime-angles, or that the sampling is uniform on the kime-angles space. When these assumptions are violated, other phase-aggregation or phase-ensembling methods (e.g., weighted mean, non-parametric measures of centrality, or Bayesian strategies) may need to utilized to ensure the reliability of the final inference.

SOCR Resource Visitor number Web Analytics SOCR Email