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Spacekime - Rate of Change and Wirtinger calculus
The domain of the kime variable () is the complex plane parameterized by pairs of Descartes Cartesian coordinates, conjugate-pairs coordinates, or polar coordinates:



The Wirtinger derivative of a continuously differentiable function () of kime (), , and its conjugate are defined as *first-}order linear partial differential operators:
In Cartesian coordinates:
 and 
In Conjugate-pair basis: 
In Polar kime coordinates:

and

Notes:
· The derivatives in terms of the polar coordinates are obtained by transforming the Cartesian complex variable  into the complex-time (kime) variable using polar transformations:
 , ,  , see Korn GA, Korn TM. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, Courier Corporation; 2000.
· Using the chain-rule of differentiation, we can derive the Cartesian coordinate derivatives by transforming the conjugate-pairs basis


Therefore,  and 
Similarly,
 and .
This explains the Cartesian coordinate derivatives:
 and .
Below, we present the core principles of Wirtinger differentiation} and integration:
· Complex conjugation () for  is defined by , so that the square norm of  is: . Solving for  and , in terms of  and  we get:

· We can effectively change the variables: . Thus, all complex functions  can be thought of as  or as .
Wirtinger differentiation: The Wirtinger derivative of ,  is an -linear operator on the tangent space , i.e.,  is a differential 1-form on . However, any such -linear operator () on  can be uniquely decomposed} as , where  is its complex-linear part* (i.e., ), and  is its complex-antilinear part (i.e., ). The reverse (composition) mapping is  and .
For the Wirtinger derivative, this duality of the decomposition of -linear operators characterizes the conjugate partial differential operators  and . That is, for all differentiable complex functions , the derivative can be uniquely decomposed as , where  is its complex-linear part} (), and  is its complex-antilinear part* ().
Applying the operators  and  to the identify function () and its complex-conjugate () yields the natural derivatives:  and . For each point in ,  represents a conjugate-pair basis for the  cotangent space, with a dual basis of the partial differential operators:

Thus, for any smooth complex functions ,

Wirtinger calculus
· The path-integral is the simplest way to integrate a complex function  on a specific path connecting  to . Generalizing Riemann sums:

This assumes the path is a polygonal arc joining  to , via , and we integrate the piecewise constant function  on the arc joining . Clearly the path  needs to be defined and the limit of the generalized Riemann sums, as , will yield a complex number representing the Wirtinger integral of the function over the path. Similarly, we can extend the classical area integrals, indefinite integral, and Laplacian:
· Definite area integral: for , .
· Indefinite integral: , ,
· The Laplacian in terms of conjugate pair coordinates is 
More details about Wirtinger calculus of differentiation and integration are provided later.
Chapter 3 Appendix
kime-magnitude-time-derivatives
In general, the classical concepts of derivative and rate of change are well defined for a kime-process  with respect to the (positive) real variable time (). Depending on the context, we interchangeably use  and other lowercase Greek letters to represent the kime-phases. The smooth time rate of change of the process  is explicated as the classical partial derivative, .
Above we showed that the partial derivatives of a kime-process in Cartesian kime coordinates are also well defined, using Wirtinger differentiation. However, in the polar representation, this strategy may not apply for the second variable (kime-phase), , which could be interpreted as a distribution. In essence,  represents an unobservable random sampling variable from a symmetric distribution compactly-supported on , or a periodic distribution.
Kime-Phase Derivatives
Above we showed that in polar kime coordinates, analytic functions can be differentiated as follows

and

The problem with computing and interpreting , and in particular , is that  may not be analytic}. This is especially interesting since one plausible spacekime interpretation of the enigmatic kime-phase is that  indexes the intrinsic stochastic sampling from some symmetric distribution, which corresponds to repeated sampling, or multiple IID random observations. This suggests that  does not vary smoothly, but is rather a chaotic quantity (random variable) following some symmetric distribution , supported over . In other words, the kime-phase change} quantity  may be stochastic! Hence, we need to investigate approaches to:
· Define paths through the kime domain,
· Compute (in a measure-theoretic probabilistic sense) changes in the kime-phase,
· Estimate probability likelihoods on regular intervals  as well as over (generally measurable) *Borel sets} , which are not necessarily contiguous intervals,
· Ultimately explicate the process partial derivative with respect to , ,
· Define kime-space probability measures, , that facilitate modeling random experiments involving observing repeated samples from controlled experiments (reflecting the kime-phase distribution) across a range of time-points (kime-magnitudes).
Note that the differentiability of  is not in question for the Cartesian representation of the kime domain, as Wirtinger derivatives explicate the multivalued differentiation of a multi-variable function, e.g., . Wirtinger differentiation provides a robust formulation even in the polar coordinate representation of the complex domain.
The problem arises in the spacekime-interpretation where we try to tie the analytical math formalism with the computational algorithms and the quantum-physics/statistical/experimental interpretation of the kime-phase as an intrinsically stochastic repeated sampling variability.
The following well-known lemma suggests that we can quantify the *distribution of the kime-phase changes} in the case when we merge the math formalism, computational modeling, and the statistical/experimental interpretation of the stochastic kime-phases.
We’ll use the standard convention where capital letters () denote random variables} and their lower-case counterparts () denote the corresponding values} of these quantities. Let’s denote by  the probability functions with proper subindices indicating the specific corresponding random process.
Lemma: Suppose  are IIDs associated with some distribution , with CDF  and PDF . Then, the distribution of their difference  is effectively the autocorrelation function

Proof: This lemma quantifies the phase-change distribution, not the actual phase-distribution. We’ll start with the most general case of two independent random variables, , following potentially different distributions, , .
Let’s compute the cumulative distribution of the difference random variable . In practice,  corresponds to the instantaneous change in the kime-phase between two random repeated experiments. Note that due to the exchangeability property associated with IID sampling {See SOCR  on Overleaf}, the distribution of  is invariant with respond to the sequential order at which we record the pair of random observations. More specifically, if the random sample of kime-phases is , then for any index permutation , the distributions of

are the same, i.e., . Hence, the phase-change distribution, , is symmetric.
Let’s compute the CDF of , the difference between any two kime-phases,

Jointly,  and


For a fixed , we’ll make a variable substitution , so that . Hence,

Integrals are functions of their (lower and upper) limits and for any function ,

In particular, .
Therefore, for any ,

This derivation of the density of the kime-phase difference is rather general, . It works for any bivariate process, whether or not  are independent, correlated, or follow the same distribution.
In the special case when  are IIDs, we can apply another change of variables transformation, , to get  and

In the most general case, we would like to compute the measure (i.e., size) of any Borel subset of the support  of the distribution . This will help with answering questions (2) and (3) from the above list. Of course, for any finite or countable Borel set, , it’s measure will be trivial, . However, many regular (e.g., contiguous) subsets  will be non-trivial, i.e., .
Recall that the entire observable universe is finite, since the age of the universe is  billion years. Due to the continuously faster universal expansion, from any point in spacetime the radius and the full diameter of the entire visible universe are 46 billion and 93 billion light-years, respectively, see article 1 and article 2. Hence, the *amount of observable data is always finite}. In statistical data-science terms, the number of observations and sample-sizes are always finite. However, theoretically, we can model them as infinitely increasing, as in the first two laws of probability theory, the central limit theorem (CLT) and the law of large numbers (LLN).
Now, let’s assume that we have a sequence of randomly sampled kime-phases , where . In other words, assume we have observed a finite number of repeated measurements corresponding to multiple observations (corresponding to different kime-phase directions) acquired/recorded at the same time} under identical experimental conditions. The phase-dispersion* is the variability observed in the recorded measurements, e.g., , is directly related to the distribution of the kime-phase differences, .
Note that changes in spacetime (jointly spacetime or separately space and time alone), always permit analytic calculations, since the presence of significant intrinsic spatiotemporal correlations induce smooth process dynamics over 4D Minkowski spacetime. However, this analyticity may be broken in the 5D spacekime, especially in the kime-phase dimension, since kime-phase indexing of observations in inherently stochastic, rather than smooth or analytic.
In our special bivariate case above, we can assume  are a pair of IIDs associated with an a priori kime-phase distribution  and corresponding to identical experimental conditions. For simplicity, we are only considering a pair of fixed kime-phase indices . Since both kime-phase distributions coincide, , the above Lemma shows that the PDF  of their difference () is the autocorrelation function

Problems & Questions
· What if the kime-phase distribution is *infinitely supported}? How can we interpret the phase distribution  over the finite bounded interval ?
· Does it make sense to interpret the phase distribution in terms of spherical coordinates as helical, instead of circular distribution?
· Can we account for both compactly supported and infinitely supported (univariate) distributions by applying renormalization adjusting for self-interaction feedback, or a regularization. Clearly there are many different (injective or bijective) transformations that map the domain of the reals to . For instance,


see Wolfram Alpha, cotan(arccos(x/(Sqrt(Pi^{}2-x^{}2)))),

one-to-one injective, see Wolfram Alpha, 2*arctan(x),

one-to-one injective, see Wolfram Alpha (2*Pi)/(1+exp(x))-Pi.
Does it make sense to denote the density function of the kime-phase differences , by  or by just by ? In other words, can we drop the explicit phase reference and denote the density of the kime-phase differences simply by ?
At a given kime, , we only have an analytic representation of the distribution of the kime-phase difference, not an explicit analytic function estimate of the actual kime-phase change or its derivative (as the kime-phase is random). In this situation, how can we define the partial derivative (or a measure-theoretic/probabilistic rate of change) of the original process of interest, ? Specifically, even though we know how to compute , we also need to estimate  but only having the probability density function of the kime-phase differences} , . In other words, we can work with the distribution* of , but can’t estimate a specific value for this rate of change, .
· Formulate the partial derivate,  as a Radon-Nikodym derivative with respect to the kime-phase distribution,  or the distribution of the phase-change, , as derived above.
Radon-Nikodym Derivative
Borel sets
A subset of a topological space is called a Borel set if it can be expressed as a countable union, countable intersection, and relative complement of either open subsets or, equivalently, closed subsets of the topological space.
For instance, if the reals  represent the base topological space, for any countable collection of open subsets  and any finite collection of open subsets , let

Then, all of these subsets  are Borel sets. The Borel -algebra on  is a nonempty collection  of subsets of  closed under complement, countable unions, and countable intersections. In this situation, the ordered pair  is called a measurable space, which is subsequently coupled with a probability measure, such as the distribution of the kime-phase.
The Borel algebra on the reals is the smallest -algebra on  that contains all the intervals. Also, given a real random variable, such as the kime-phase , defined on a probability space, such as , where  represents observable events, the variable probability distribution  is a measure on the Borel -algebra.
Absolutely Continuous Measures
A measure  on Borel subsets of the measurable space  is absolutely continuous with respect to another measure  if -measurable sets , . We denote absolute continuity by  indicating that the measure  is dominated by the measure .
When , the following conditions for a finite measure  on the Borel subsets of the real line are equivalent:
·  is absolutely continuous with respect to the Lebesgue measure  over the reals;
· ,  such that  for all Borel sets  of Lebesgue measure ;
· There exists a Lebesgue integrable function , such that for all Borel sets 

The last equivalence condition (3) suggests that for any pair of absolutely continuous measures , there exists a ‘’pseudo’’-derivative of the measure  with respect to its dominant measure , which can be denoted by .
Radon-Nikodym derivative
Given a pair of -finite measures, , defined on a measurable space . When  is absolutely continuous with respect to , i.e., , then there exists a -measurable function , such that for any measurable set ,  is the Radon-Nikodym derivative of  with respect to the distribution 

Furthermore, the Radon-Nikodym derivative function  is uniquely defined up to a -zero measure set. In other words, of  is another Radon-Nikodym derivative of , then  almost everywhere except potentially on a set  of trivial measure, .
Radon-Nikodym derivative is similar to the classical derivative as it describes the rate of change of the density  (the marginalized numerator measure) with respect to the density  (the dominating, denominator measure) just like the determinant of the Jacobian describes variable transformations (change of variables) in multivariable integration.
Examples
Example 1 (Classical Jacobian): of a 2D polar-to-Cartesian coordinate frame transformation

The Jacobian of the transformation  is the  matrix of partial derivatives

The effect of the change-of-variables transformation  on computing the definite integrals is

Example 2 (Radon-Nikodym derivative of the Euclidean measure): Suppose the topological space is the support of the kime-phase, , and  is the Borel -algebra on .
For any open interval , we can take  to be twice the length measure of the interval , hence, . Let’s also choose  to be the standard Euclidean measure of the interval, i.e., . In this case,  is absolutely continuous with respect to , i.e., . Then, the Radon-Nikodym derivative of  with respect to  will be constant, .
Example 3 (Undefined Radon-Nikodym derivative). Let  be the Euclidean (length) measure on  and  be a special measure that assigns to each subset , the number of points from the set  that are contained in . Then,  is not absolutely-continuous with respect to , since , whereas . Therefore, the Radon-Nikodym derivative  is undefined. In other words, there is no finite function  that,

since  for all finite functions .
Example 4 (Discontinuous Radon-Nikodym derivative). Let’s choose the relation between the dominating and the dominated measures to be , where  is the Euclidean (length) measure on  and  is the Dirac measure on . Then, , and the Radon-Nikodym derivative is a discontinuous function

Example 5 (Radon-Nikodym kime-phase derivative): Again, we use the topological space with support equal to the support of the kime-phase, , and  is again
Let’s explore a more kime-phase realistic example where we take the dominant measure  to be  distribution and the marginalized (dominated) measure  to be a different Laplace distribution, . Again, by design,  is absolutely continuous with respect to , i.e., . For details, see the graph below and R code in the Appendix.
Then, denote by  the Radon-Nikodym derivative of the phase distribution  with respect to the measure . Note that  is a probability distribution, whereas  is only a measure, which can be normalized to a distribution.
library(plotly)
## Warning: package 'plotly' was built under R version 4.3.1
## Loading required package: ggplot2
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
N <- 10000
xNu <- extraDistr::rlaplace(N, mu = 0, sigma = 0.4)
yNu <- density(xNu, bw=0.2)
xMu <- extraDistr::rlaplace(N, mu = 0, sigma = 0.5)
yMu <- density(xMu, bw=0.2)
# Correct second Laplace Density to ensure absolute continuity, nu << mu
yMu$y <- 2*yMu$y
plot_ly(x = xNu, type = "histogram", name = "Data Histogram") %>% 
    add_trace(x=yNu$x, y=yNu$y, type="scatter", mode="lines", opacity=0.3,
       fill="tozeroy", yaxis="y2", name="nu, Laplace(N,0,0.4) Density") %>% 
    add_trace(x=yMu$x, y = yMu$y, type="scatter", mode="lines", opacity=0.3,
       fill="tozeroy", yaxis="y2", name="mu, Laplace(N,0,0.5) Density") %>% 
    layout(title="Absolutely Continuous Laplace Distributions, nu<<mu", 
           yaxis2 = list(overlaying = "y", side = "right"),
           xaxis = list(range = list(-pi, pi)),
           legend = list(orientation = 'h'))
[image: Chapter3_Radon_NikodymDerivatives_files/figure-docx/unnamed-chunk-1-1.png]
integrate(approxfun(yNu), -pi, pi) # 1.000199 with absolute error < 7.6e-05
## 1.000311 with absolute error < 1.9e-05
integrate(approxfun(yMu), -pi, pi) # 1.997212 with absolute error < 0.00023
## 1.996055 with absolute error < 0.00022
Here is a recipe to compute the (unique) Radon-Nikodym derivative  for any interval

Since , it’s Laplace CDF  is

and therefore,


Also,


Next, we need to change the variables to transform the above integral to

By the uniqueness of the Radon-Nikodym derivative, the function  will be the desired derivative, up to a set  with trivial measure, . Recall that in this example, the dominant measure  is , i.e., twice the Laplace density, whereas  is a Laplace distribution with a different scale parameter, , .
(Does this derivation need to be more explicit in terms of a change of variables transformation, e.g., ?)
Rearranging the terms, we get

Therefore, we need to solve for  this equation

The solution of this equation for  is the (unique) Radon-Nikodym derivative of  with respect to 

Therefore, given that , , and , then the Radon-Nikodym derivative .
Properties of the Radon-Nikodym Derivative
Given several -finite measures, the following properties of the Radon-Nikodym derivative (additivity, chain rule, reciprocation, change of variables, and magnitude) are helpful in estimating the derivative function  in certain situations by breaking the calculations into basic building components.
Additivity Property
Suppose , and  are -finite measures on the same kime-phase measurable space . Assuming  and  are both absolutely continuous with respect to , i.e.,  and , then -almost everywhere in 

Proof: We have that , , and . Hence, given that  implies that  and . Therefore,  is an absolutely continuous measure with respect to , i.e.,  and . This implies the additivity property,

Chain Rule Property
If , then -almost everywhere

Proof: Since , , . As , , such that

Reciprocal Property
If  and , then the Radon Nikodym derivative  is the inverse function of the reciprocal Radon Nikodym derivative,  , i.e.,

Proof: Since  and , . Hence,

Hence,  .
Change of Variables Property
For any -integrable function, , given that , then

Proof: Since ,  such that . Therefore,

Magnitude Property
When  is complex measure and , the Radon Nikodym derivative of the magnitude  is the magnitude of the Radon Nikodym derivative of , i.e.,

Proof: This proof follows Cohn’s “Measure Theory” (1980), doi:10.1007/978-1-4899-0399-0.(page 135-136).
According to the definition of , for each  in the algebra  ,  is the supremum of the numbers ,

where  ranges over all finite partitions of  into -measurable sets.
Assume  for any Borel set .  if and only if  for any Borel set . We then show  for any Borel set .
First prove  for any Borel set . Let  be a finite sequence of disjoint -measurable sets whose union is .
Thus,

Since , we can derive

Then prove . Construct a sequence  of -measurable simple function

where  are the values attained on the sets .  are disjoint -measurable sets whose union is . Obviously,  satisfies  and  hold ar each x in . Then for any arbitrary set in the -algebra  we have

Since  and , according to the dominated convergence theorem, we have

Thus,

From above,

for any Borel set . Therefore,

Distributional Derivatives
Distributions, also known as generalized functionals, generalize the classical notion of functions in mathematical analysis to operators. Distributions make it possible to differentiate functions whose classical derivatives do not exist. For instance, any locally integrable function has a distributional derivative, albeit it may be non-differentiable.
In classical mathematical analysis, a function  can be thought as an operator acting on domain points  by mapping them to corresponding points in the range . Whereas in functional analysis and distribution theory, a function  may be interpreted as an operator acting on test functions, representing all infinitely differentiable, compactly supported, complex-valued functions defined on some non-empty open subset . The set of all such test functions forms a vector space

For instance, when , all continuous functions  act as operators integrating against a test function. Given a test function , the operator  acts on  by mapping it to a real number as follows:

The  action  defines a continuous and linear functional that maps the domain of test functions  (infinitely differentiable and compactly supported functions) to scalar values, i.e., . This distribution  action, , by integration against a test function, , is effectively a weighted average of the function against  on the support of the test function. Mind that the values of the distribution at a single point may not be well-defined (cf. singularities). Also, not all probability distributions  have well-defined densities . Hence, some distributions  may arise from functions via such integration against a specific test function, whereas other distributions may be well defined, but do not permit densities and cannot be defined by integration against any test function.
Examples of distributions that associated with a bounded and compactly supported density function are the Dirac delta function and other distributions that can only be defined by actions via integration of a test function  against specific measures  on .
To recap distributions and Green’s theorem, we can consider a function  as a distribution  or a continuous linear functional on the set of infinitely differentiable functions with bounded support (denoted by , or simply ).
Properties
· , and 
· Any continuous function  can be regarded as a distribution by integration against a test function .

Function approximation: If there exist a series of functions approximating , i.e., , then

Distributional derivative: Some non-differentiable functions may be differentiated as distributions. The distributional derivative of  is well defined as the distribution  given by

This makes sense, since , , and , integration by parts yields

Examples
Example 1: Let . Then, ,

Example 2: Suppose the one-parameter family of functions  are defined by

and  is the distribution corresponding to , then, 

This implies that as the parameter  increases, the function , i.e., the distribution functions  approximate the Dirac delta distribution, .
Example 3: Determine what function  corresponds with ?
First, we can validate that  is a linear operator, ,

Next, , we need to express , for some function .
Integrate by parts the definition of the distribution

where the Heaviside function is . Therefore, this distribution , corresponds to .
Example 4: Compute the distributional derivative of the Heaviside function .
Since , we have

Therefore, distributional derivative of the Heaviside function  is the Dirac delta function, i.e., .
Example 5: Compute the distributional derivative of the delta function .
Again, since , we have

Higher-order distributional derivatives
The order  distributional derivatives are defined by induction. The case of , first derivative, is presented above. Higher order distributional derivatives are defined by repeated application of integration by parts ( times):

For instance, let , then, for ,


Therefore, the second order distributional derivative of  is .
Heisenberg Kime-Uncertainty Principle for Kime Magnitude (Time) and Direction (Phase)
Goal: Derive a general kime-operator, , or a kime-phase operator, , similarly to the position  and momentum  operators.
Linear time evolution operator
The exponential of an operator is defined to solve linear evolution equations. Suppose
 is a bounded linear operator on a Banach space . Generalizing the the power series expansion of , we define the operator exponential by

The norm of the operator, , leads to a convergent real series

The important operator exponential properties include:


In general, a time-evolution operator is a solution of an initial value problem for a linear scalar ODE  with boundary condition . The solution of the scalar linear time-evolution operator is . In the more general case of a (vector) linear system of ODEs, , the solution is

where ,  is a Banach space, and  is a bounded linear operator on  By definition, the derivative of the operator exponential , similar to the scalar case :

When , the linear system of ODEs corresponds to linear operator  representing a linear system of  equations on in a finite-dimensional space. However, the same notation of the operator, , time evolution, , and solution, , apply to infinite dimensional spaces, e.g., spaces of continuous functions or  integrable functions.
· Recall how we derive the momentum operator :
The wavefunction of a free particle with momentum  and energy  can be expressed in the position space in the form of a de Broglie wave function, , up to a constant multiple, where  is the wave number,  is angular frequency. Then, the (spatial) partial derivative of  is

Hence, . In terms, of linear operators, this relation is expressed as
$$\underbrace{\frac{\hslash}{i}\frac{\partial}{\partial x}}_{Linear\ \\ operator}\ 
\overbrace{\ \ \psi\ \ }^{State} = 
\underbrace{\overbrace{\ \ \ p\ \ \ }^{momentum \\
eigenvalue }}_{numeric\  \\
value\ or\ vector}\ \cdot \underbrace{\overbrace{\ \ \ \ \ \ \psi\ \ \ \ \ \ \ }^{eigenfunction}}_{(Eigen)\ State}\ \  .$$
Therefore, the operator  is called the ’‘momentum operator’’, since it’s in one-to-one correspondence with the momentum (eigenvalue). Applying  to the wavefunction (state) yields an estimate of the momentum numerical value/vector.
There is no ’‘time operator’’, see Pauli’s argument against the existence of a time operator rooted in the boundedness of the energy operator, see article 1 and article 2. However, in the Schrödinger picture representation, there is a linear time evolution operator  specifying the future state of an electron that is currently in state , as , for each possible current state . The time-evolution of a closed quantum system is unitary and reversible. This implies that the state of the system at a later point in time, , is given by , where  is a unitary operator, i.e., its adjoint  operator is the inverse: . The integral equation  relates the state of the particle at the initial time  with its state at time . Locally, we can express the position of an inertia particle at time  is , where  is the constant speed and  is the initial position, i.e., . The (time-dependent) Schrödinger equation, , represents a generalization of this (ordinary) differential equation, where the particle system Hamiltonian is  and the PDE solution is the particle wavefunction , which describes the particle state (e.g., position) at time , given its initial position .
The quantum argument for an external time is rooted in the contradiction associated with assuming the existence of a general time operator, see this article. A well-defined time operator  has to be paired to a conjugate energy operator , a Hamiltonian, as follows from the Heisenberg’s formulation of the pair of classically conjugate variables, time and energy. The commutator operator  suggests a time-energy uncertainty relation in two separate forms, see this.


It’s worth to review the two complementary versions of the Schrodinger equation:


When the Hamiltonian is time-independent, the solution to the Schrodinger equation is

Assuming the existence of a time operator , we can construct a unitary operator  that acts by translating states along the energy spectrum, . Infinite iterative application of the  translation operator can project the system into a state of arbitrarily negative energy implying system instability at a stable vacuum state.
In quantum theory, the time-energy uncertainty relation is not well-defined because of the multiple forms of time. Pragmatic or external time may be defined as the parameter entering the Schrodinger equation and measured by an external and independent clock. Dynamic time represents an intrinsic tracker defined through the dynamical behavior of the quantum objects themselves. Observable time represents a measurable characteristic of event ordering. Spacekime analytics regards the kime-magnitude as an observable time tracking the ordered ranking of sequential longitudinal events.
When the Hamiltonian operator  is constant, the Schrödinger equation has the solution

The time-evolution operator  is unitary preserving the inner product between vectors in the Hilbert space over the field , i.e., . Let’s denote  the initial state of the wavefunction and the corresponding state at a time  by  for some unitary operator . These are all solutions to the Schrödinger equation since given another continuous family of unitary operators parameterized by  by , we can choose the parameterization to ensure that  is the identity operator and . This specific dependence of  on the time argument implies that , for some self-adjoint operator  called the generator of the family .
In other words, the Hamiltonian operator  is an instance of a generator, up to a multiplicative constant, , which may be set to  in natural units. The generator  that corresponds to the unitary operator  is Hermitian, since  and therefore

Thus, to a first order approximation,  is unitary when its generator (derivative) is self-adjoint (Hermitian), i.e., .
· Under the Copenhagen interpretation, the Schrödinger equation relates information about the system at one time, , to information about the system at another time, . The Schrödinger equation encodes the time-evolution process continuously and deterministically, as knowing  is in principle sufficient to calculate . However, the wavefunction can also change discontinuously and stochastically during the measurement process, as the kime-phase is stochastic . Each observation is an act of measurement, which corresponds to a random sample from the kime-phase distribution. In practice, this stochastic behavior of the wavefunction is mediated by acquiring multiple repeated sampling from a tightly controlled experiment, i.e., simulating multiple samples corresponding to an identical time . Then, we commonly use various aggregation functions, i.e., sample statistics, and rely on LLN to argue that the expected values of our sample statistics tend to their corresponding population-wide distribution characteristics. Examples of such population parameters include measures of centrality, e.g., mean and median, measures of dispersion, e.g., variance and IQR, and measures of skewness or kurtosis. Prior to each measurement, the exact post-measurement value of the wavefunction is known, however, the kime-phase distribution model suggests probability likelihood of specific classes (cf. Borel sets) of observable wavefunction values.
· The wavefunction solutions to Schrödinger equation cover all simultaneously all possibilities described by quantum theory. Instantiations of these possibilities correspond to individual random sampling from the underlying kime-phase distribution. This preserves the continuous longitudinal time-evolution of the wavefunctions solving the Schrödinger equation, as all possible states of the system (including the measuring instrument and the observer) are present in a real physical quantum superposition, reflecting the kime-phase model distribution. Even though the 5D spacekime universe is deterministic, in 4D Minkowski spacetime, we perceive non-deterministic behavior governed by probabilities, see the ‘’spacekime interpretation’’ section in the Spacekime/TCIU book. That is, we are not equipped to observe and interpret spacekime as a whole. We can only detect, process and interpret tangible evidence of observable phenomena trough finite sampling across spacetime.
Previously, we showed that (periodic) potential functions  of this type

solve the general ultrahyperbolic wave equation, , where ,  and  represent respectively the frequency vectors of integers corresponding to the temporal (angular frequency) and spatial frequencies (wave numbers) of the Fourier-transformed periodic solution of the wave equation.
More generally, since the wave equation is a linear PDE, any finite linear combination of  such basic potential functions will also represent a (composite, superposition) solution:

In polar coordinate representation of kime, the simple () separable solutions of the wave equation can be expressed via the Euler formula:



One specific solution illustrated on Figure 1 is given by:

where  and , .
Figure 1: Examples of the existence of a locally stable solution to the ultrahyperbolic wave equation in spacekime. The left and right figures illustrate alternative views and foliations of the 2D kime dynamics of the 5D spacekime wave projected onto a flat 2D (x,y) plane. [image: https://wiki.socr.umich.edu/images/4/46/Spacekime_WaveEquationSolution_VolRenderAnim1.gif].
[image: https://wiki.socr.umich.edu/images/1/1c/Spacekime_WaveEquationSolution_SurfRenderAnim2.gif].
Question: Double check the signs of the exponential components in the wave equation solutions. Are we off by a negative sign in front of the kime inner product term, ? In chapter 3, p. 149, we argue that , where the energy . Mind the sign differences between spatial () and kemporal () parts in the exponent.
To explicate the kime-phase (or kime) Hermitian (self-adjoint) operator, , we consider the particle wavefunction as a spatiotemporal wave-distribution, , not really a function, since the kime-phase, , is random. Assume there is a kime-phase operator

Hence, the action of the linear kime-phase Hermitian operator  is to draw a random phase value from the circular phase distribution . Such instantiation of the kime-phase, , localizes the spatiotemporal position of the observation in 4D Minkowski spacetime.
Phase Distribution Random Sampling
Let’s examine the process of random sampling from the phase distribution, . This can be done many different ways.
· One strategy involves inverting the CDF, i.e., compute the phase quantile function, and evaluating it over random uniform observations

· In general, if the CDF has a closed form analytic expression and is invertible, then we can generate a random sample from that distribution by evaluating the inverse CDF at , where .
The rationale behind that is that a continuous CDF, , is a one-to-one mapping of the domain of the CDF (range of ) into the interval . If , then  would have the phase distribution , since  is monotonic, and , and

· Another approach for random sampling from the phase distribution, , is to utilize the Laplace transform, which can be defined as an expected value. The Laplace transform is an integral transformation of functions over time (inputs) to outputs in the frequency-domain, outputs are functions of complex angular frequency, in radians per unit time.
If  is a random variable with probability density function , then the Laplace transform of  is the expectation of , i.e.,

Setting  yields the moment generating function (MGF) of ,

For each continuous random variable , we can employ the Laplace transform to compute the cumulative distribution function, , and by extension, the inverse CDF (the quantile function), , as follows.

However, the random variable , and correspondingly its density function  map . Hence, the ’‘inverse CDF function’’  and the ``inverse linear operator’’  have different meanings that are not interchangeable. Thus, the second relation is not equality!


The Laplace transform for many probability distributions have closed-form analytical expressions. The table below incudes the LTs of some commonly used distributions.
· (Left) Original Function 
· (Right) Laplace Transform, 
· Exponential distribution
 & 
· Weibull distribution
 & , where

· Normal distribution
 & 

· Gamma distribution
 & 
· Generalized Gamma distribution
 & 
· Pareto distribution
 & 
.
The ‘’Phase Problem’’
The phase problem is ubiquitous in experimental science and refers to loss of information due to lack of wave phase details when making many physical measurements. A perfect motivational example is the complex wave representation clarifying this illusion arising by projecting the 3D ‘’corkscrew’’ wave shape into 2D and only showing the 1D values in the space of complex amplitudes, see the following interactive 3D scenes:
· Spacekime Chapter 3
· Spacekime Chapter 6.
The following three examples of the ‘’phase problem’’ are analogous to the ‘’kime-phase problem’’ and demonstrate the potential inference benefits of recovering kime-phases to enhance subsequent modeling, interpretation, and forecasting of intrinsically stochastic phenomena.
Recovering 3D crystal structure
The first example reflects recovering the 3D crystal structure from magnitude-only diffraction patterns in crystallographic studies phase-problem, and this reference. For instance, X-ray crystallography diffraction data only captures the amplitude of the 3D Fourier transform of the molecule s electron density in the unit cell. The lack of phase information obfuscates the complete recovery of the electron density in spacetime using Fourier synthesis, i.e., via the inverse Fourier transform of the data from the native acquisition frequency space.
The following image from the Spanish National Research Council (CSIC) the depicts the challenge of phase-recovery in X-ray diffraction studies.
[image: https://wiki.socr.umich.edu/images/4/4f/X-ray_diffraction_CSIC.jpg]
X-ray diffraction
The 3D atomic structure of a crystal is imaged as diffraction effects on a 2D reciprocal lattice. Only the diffraction magnitudes, the dark intensities at the reciprocal (Fourier) lattice pixels, amplitude values (intensities) of the fundamental vector quantities are recorded. Their relative orientations (relative phases) are missing. This lack of phase information inhibits the exact recovery of the value of the electron density function at each point and the explication of the atomic positions in the crystal structure in spacetime.
Quantum Theory over Real and Complex Base-Fields
By some accounts, physics aims to explain observed experiments through mechanistic theories, whereas mathematics aims to describe the fundamental principles of all possible solutions under strict conditions or a priori assumptions. The difference in focus between these two scientific domains sometimes leads to friction. Mathematical possibilities may include system configurations, observable states, or exotic designs that may be possible, likely, unlikely, or extremely rare (e.g., of trivial measure, or zero probability) that are still absolutely necessary to complete a system. From a physical perspective, such ‘’almost surely’’ unlikely to be observed systems or states are considered unreal, unobservable, and not-constructive, i.e., not worth investigating. This physics-mathematics dichotomy may also be phrased in terms of the Kurt Gödel’s incompleteness theorem (1931), which proves that any system equipped with natural number arithmetic cannot be at the same time complete and self-consistent with respect to its core axioms.
The second example illustrating a need to generalize real to complex representations explores the differences between quantum physics predictions based on formulating quantum theories using Hilbert-spaces defined over the fields of the reals () and the complex numbers (), see this article. In a nutshell, real and complex Hilbert-space quantum theoretic predictions yield different results (in network scenarios comprising independent states and measurements).
[image: https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41586-021-04160-4/MediaObjects/41586_2021_4160_Fig2_HTML.png]
Differences between quantum physics predictions using real and complex representations
This suggests the existence of realizations disproving real quantum theory similarly to how the standard Bell experiments disproved local physics. The relevance to complex-time representation of this recent (2022) discovery is reflected in the dichotomy between (1) classical quantum mechanics formulation of self-adjoint (Hermitian) operators and their real eigenvalues (observable states), and (2) the less obvious but potentially more powerful abstraction of the more general bounded linear operators and their complex eigenvalues. This leads to the quest to formulate a kime-operator whose eigenspectrum contains the continuous kime values, , as observables over the smallest complete field that naturally extends time, .
(Top) complex quantum theory, two independent sources distribute the two-qubit states and generate a 4-vector output Bell measurement. (Bottom) in real physics, the observed correlations cannot be reproduced, or even well approximated, since all the states and measurements in the network are constrained to be real operators.
Fourier Transform Amplitudes and Phases
The third example illustrates the importance of the phase in 2D Fourier transformation. We will demonstrate two scenarios:
· the use of the only of the amplitudes (magnitudes) to synthesize the images back in space time without the phases (nil-phase), and
· the use of incorrect phases (swapping the phases of the two images).
[image: https://wiki.socr.umich.edu/images/f/f7/FT_IFT_Earth_Saturn_PhaseEffects.png]
The first table shows the original images (Earth and Saturn) and their complex Fourier frequency components.
[image: https://wiki.socr.umich.edu/images/f/fd/FT_IFT_Earth_Saturn_PhaseEffects_T2.png]
The second table shows both spacetime reconstructions of the images with the two different phase estimation strategies presented above (nil phase and swapped phases). The results appear somewhat reasonable but are certainly far from being perfect image reconstructions.
In addition to the physical science motivations above, complex time offers completeness with respect to both additive and multiplicative operations over kime, which is similar to the spatial dimensions. The complex (algebraic) field , equipped with the  operations, is the smallest algebraic field that naturally extends the multiplicative algebraic group, , which is not closed with respect to addition.
In longitudinal data science and statistical inference, the enigmatic ’‘phase of complex time’’ (kime-phase) represents an analogous challenge as the ’‘physical-chemistry phase problem’’. Complex-time representations offer significant opportunities to advance inference science including generation of large and realistic random IID samples. It also supports Bayesian formulation of Spacekime analytics, tensor modeling of ℂ kimesurfaces, and the development of completely novel analytical methods directly on the kimesurfaces.
Does the overall phase of a quantum state have a physical meaning?
Quantum system states are represented by ket vectors in the Hilbert space. For instance, spin states correspond to a 2D Hilbert space, see Chapter 5 of Quantum Mechanics - A Concise Introduction, corresponding with the  Pauli matrices.
In the general case, the dimension of the Hilbert space may be finite,  or infinite and always has orthonormal basis vectors  where any quantum state can then be expressed as a linear superposition of these basis vectors

where the expansion coefficient  expresses the projection of the state  on the basis vector  is given by the inner product of  and , i.e., . To ensure proper probabilistic interpretation, the normalization condition is imposed

Quantum system observables are represented by operators expressed mathematically as second order tensors (matrices). For instance, the Pauli matrices represent spin observables along different axes where the Hilbert space is 2-dimensional as we have left-right, (), up-down, back-forth directions for the spin along the given unitary direction (could be a coordinate axis, , or any vector direction

in spherical coordinates.
For each observable , we have the following relation between the (linear) matrix algebra supporting quantum computations and the corresponding physical interpretations.

The expectation value of the operator in any given quantum state  in the Hilbert space represents the overall mean

where  is a complete set of eigenvectors for the observable operator , i.e., .
The probabilistic interpretation of any quantum state  is as a linear superposition of the all the eigenstates of the observable (operator)

where  is the probability of finding the system in an eigenstate  and measuring  in this quantum state would yield an outcome  with probability .
There are two specific reasons for the most common quantum mechanics interpretation suggesting that the overall phase of a quantum state has no physical meaning. More specifically, this interpretation implies that all these vectors in the Hilbert space over the field of the complex numbers represent one (and unuique) physical quantum state

· The expectation values of  and  are the same:


· The probability of finding the system in the eigenstate  is also the same for both cases:


These properties may suggest that there  are no physical differences between the states  and ; hence, state phases can be ignored.
Indeed, these finite dimensional Hilbert space derivations using sums naturally extend to integrals in the infinite dimensional Hilbert spaces, e.g., , square integrable functions. For instance, the general expected value

can be expressed for the position  and momentum  operators as


How about the variance of the linear operator? Would the variances of  and  be the same?


In most physical systems, energy dynamics are more important than absolute energy levels
In a nutshell, the global phase may appear to be physically irrelevant because of the linearity of the Schrodinger equation - two states  and  are both solutions to the same equation. Another reason why the phases may frequently be ignored in some experiments is due to energy preservation laws. Energy expectation values do not depend on the phase, however other measurements and observables may certainly depend heavily on the phase.
The phase plays roles in quantum computing and all of quantum physics, however, the phase is routinely ignored despite the fact that the phase often shows up in the underlying mechanistic models, mathematical representations, and quantum physics equations.
Consider the example of a free-falling object, due to gravity, a dropped ball will accelerate towards the gound. The velocity of the ball (i.e., its kinetic energy) at the the point it hits the ground is by the change, or difference, in the ball’s potential energy.
Suppose the initial velocity of a free-falling ball is zero,  and the height of the initial drop is the position . Since the acceleration of the earth’s gravity is constant, , which is the rate of change of the velocity with respect to time (), the velocity changes uniformly over time.
Thus, , the negative sign reflects the downward direction of velocity. Since the velocity is constant, the average velocity over a period of time  is . The distance traveled by the ball as it falls is  and as the initial height of the drop location is , the actual position (height) and momentum of the ball at any given time  are

Hence, in classical mechanics we can completely determine the state of the ball (it’s position and velocity at a given time). This situation is drastically different in quantum mechanics, where measuring precisely the exact position and momentum of a particle at the same time is impossible.
Given the mass  of the ball, we can calculate the kinetic energy of the at time 

Rearranging the terms we obtain the lat of conservation of energy
$$\underbrace{E}_{total\\ energy}=\underbrace{K}_{kinetic\\ energy} + \underbrace{mgx}_{potential\\ energy\ V(x)} 
= \underbrace{mgx_o}_{constant} \ .$$
The sum of the kinetic and potential energies is a constant of motion. Note the rebalancing between the kinetic and potential energies. As the ball falls, its kinetic energy increases exactly as much as its potential energy decreases. This result is valid for arbitrary systems without friction, where the total energy is composed of kinetic energy and potential energy. During the motion, the kinetic energy and potential energy are transformed into each other, preserging the total energy over time. At the start, the total energy is purely potential, . In classical mechanics, the energy can vary continuously, whereas in quantum mechanics, energy can be discrete.
In terms of computing the dynamics of a physical system, only energy differences, not absolute energy values, are important. For modeling the motion of electrons, only the differences in voltages, as opposed to absolute values, tend to be important. Similarly, in quantum physics, the quantity that determines the dynamics is the Hamiltonian of the system, which is measures in units of energy. The Hamiltonian is self-adjoint (Hermitian) operator with eigenvalues representing the observable energy levels during the time evolution of the system.
In quantum computing using binary quantum bits (qubits) , the global phase of a quantum state is not detectable, i.e.,  and  are the same, a single-qubit state can be expressed as

where  is the probability of the qubit being in the state  and the quantum phase .
Hermitian operators like the Hamiltonian are used for modeling quantum computing gates, which can be expressed as Hermitian operators. For instance, the operator

acting on states  as follows

As the absolute values of energy depend only on the measuring unit and are not important, adding a constant amount of energy to the system Hamiltonian does not alter the states.
In other words, for any  and  the identity operator,  has the affect of shifting all of the eigenvalues by a fixed amount , which leaves the differences between values unchanged! Hence, the system dynamics are unaffected this shift. Let’s examine the effect of this shift from the old () to the new  Hamiltonian on the quantum gate by contrasting the effects of the corresponding Hamiltonial operators  and  on a state vector :


where the action of the energy-shifted Hamiltonian is the same as the original Hamiltonial multiplied by a global phase factor . These global phases can be ignored as they correspond to uniform shifts in energy that do not affect the system dynamics.
Realistic spacetime simulation and inference using spacekime representation
Let’s explore some strategies to amplify the utility of classical spacetime processes via complex time transformations. Both of these basic computable tasks – random simulation and inference (including forward prediction, regression, classification) – can be addressed through kime representation. The benefits of Spacekime analytics are realized by retaining both the commonly observed kime-magnitude (time) and the enigmatic kime-direction (phase).
Large-scale simulation
Large-scale simulation of realistic spacetime observations based on a few measurements (smaller samples of repeated measures for a fixed time, )
$$\left\{ \underbrace{\ \ \ y_{l}\ \ \ }_{observed \\
eigen\ states} = 
\underbrace{\ \ f\left( t_{o}e^{i\theta_{l}} \right)\ \ }_{implicit \\
function} \right\}_{l = 1}^{n}\ .$$
Note that these (spatiotemporal) observations may also depend on the location, , however, under a controlled repeated experiment assumption, we are suppressing this spatial dependence. Let’s assume that the implicit Laplace transform of the spacetime function (wavefunction, ), , is evaluated (instantiated) at , for some fixed spatiotemporal location (. Consider the kime-surface isocontour , parameterized by . Define the phase density , where the density normalization factor is

Then,  and the corresponding cumulative phase distribution function is

First, we will draw a large sample from the kime-phase distribution by taking a large uniform sample,  and evaluating the quantile function, , at the uniform points, . Having this large sample from the phase distribution allows us to obtain a corresponding realistic spacetime sample via the inverse Laplace transform

{Question}: Does this argument assume that we need to interpolate the signal  over the observed small observation sample, , in spacetime, as we did in the arXiv LT/ILT paper, to be able to approximate ? If so, does the recovered large sample  depend on the interpolation scheme, or the basis, and how?
Alternatively, we can also sample the signal in spacetime as we discussed earlier, via the MGF and the quantile function. Set  in the Laplace transform to get the moment generating function (MGF) of , the random variable generating observable outcomes via the implicit function (), i.e., . Then,

Assume the (small) repeated sample, , represents instantiations of a continuous random (observable) variable , e.g., particle-position or value of a stock. We can employ the Laplace transform to compute the cumulative distribution function of the process, , and by extension, the inverse CDF (the quantile function), , as follows *


Note that the Laplace transform and its inverse are linear operators acting on the Hilbert space of functions, i.e., the transforms are in the dual space, , where  is the space of square integrable functions with sufficiently fast decay and  is its dual. However, the random variable , and correspondingly its density function  map . Hence, the ’‘inverse CDF function’’  and the ’‘inverse linear operator’’  have different meanings that are not interchangeable. Even though using the  notation for both operations is standard, to avoid any potential confusion, it may be more appropriate the denote the Laplace transform and it’s inference by hats, , , instead of inverse notation. Because of this difference the equation above does not imply that inverting the CDF is equivalent to inverting the Laplace transform,


Hence, , where , , and .
Question: Would this alternative sampling scheme work in practice? Without any interpolation of the implicit signal  over the observed small observation sample, , in spacetime compute . Then, take a large sample of kime-phases , e.g.,  can be the truncated symmetric Laplace (double exponential) distribution over . Finally, for a fixed time, , we can recover a large sample  of repeated measures in spacetime via
$$\left\{ \underbrace{\ \ \ {\widehat{y}}_{k}\ \ \ }_{repeated \\
sample\ at\ \ t_{o}} \right\}_{k = 1}^{N} = \mathcal{L}^{- 1}\left( \left\{ \underbrace{t_{o}e^{i\theta_{k}}}_{z_{k}} \right\}_{k = 1}^{N} \right)\ .\ $$
Spacekime Modeling, Inference, Prediction, Regression, or Clustering
Next, we describe a generic spacekime analytic protocol for modeling and inference of prospective process behavior, e.g., prediction, regression, or clustering, using limited spacetime observations.
There is one important difference between the prior (large-scale) simulation task discussed above and the current modeling, prediction and inference protocol. Earlier, the repeated samples represented multiple IID observations of a controlled experiment with a fixed spatiotemporal location, (. Whereas now, the prediction may be sought across spacetime. In particular, we are interested in forward prediction of the longitudinal process at some fixed spatial location, , for future time points, , for some past times, , or even in more general situations [^1].
Naturally, we start with a small sample of observations measuring the outcome variable repeatedly  times , independently over a set of timepoints ,
$$\underbrace{\ \ \ Y\ \ \ }_{observed \\ tensor} = 
\underbrace{\ \ f\left( 
\overbrace{te^{i\theta}}^{\kappa} \right)\ \ }_{implicit \\ function} \equiv 
\left( y_{m,l} \right )_{\underbrace{\ \ t_{M}\ \ }_{time} \times 
\underbrace{\ \ n\ \ }_{repeat}} \equiv \left\{ 
\underbrace{\ \ \ y_{m,l}\ \ \ }_{observed \\ eigen\ states} = 
\underbrace{\ \ f\left( t_{m}e^{i\theta_{l}} \right)\ \ }_{implicit \\
function} \right\}_{m = 1,l = 1}^{M,\ n}\ .$$
The observed data represents a second order tensor  indexed by longitudinal event order (time, ) and the repeated IID sampling index (). This tensor data can be thought of as a design matrix with rows corresponding to time indices () and columns tracking the repeated measurements within each time point, . Note that the data tensor  may potentially include missing elements. All supervised prediction, classification and regression models we can apply to observed spacetime data, , are also applicable to the enhanced (kime-boosted) sample, . The kime-boosted sample is recovered much like we did in the earlier simulation task,
$${\widehat{Y} = \left( {\widehat{y}}_{j,k} \right)_{T \times N} \equiv \left\{ \underbrace{\ \ \ {\widehat{y}}_{j,k}\ \ \ }_{simulated \\ eigen\ states} = \underbrace{\ \ \mathcal{L}^{- 1}(F)\left( t_{j}e^{i\theta_{k}} \right)\ \ }_{implicit \\
function } \right\}}_{j = 1,\ k = 1}^{T,\ N}\ ,$$
where the time indices  and the phase indices .
Forward inference, time predictions, and classification tasks using the kime-boosted sample can be accomplished in many alternative ways. For instance,
· We can perform the desired modeling, forecasting, regression, or classification task on the Spacekime recovered large sample, i.e., design matrix , via inverse Laplace transforming the kime-surfaces as spacetime data objects, that are much richer than their counterparts, , originally observed in spacetime.
· Alternatively, instead of directly modeling the native observed repeated measures time-series, , all modeling, inference, prediction, or classification tasks can also be accomplished directly on the kimesurfaces, , where  and the interpolation time-series function is . In this case, any inference, prediction, or derived class-labels need to be pulled back from spacekime into spacetime via the inverse Laplace transform,

This spacetime inference recovery facilitates direct (spacetime) interpretation in the context of the specific modeling or prediction task accomplished in spacekime.
Kime Measures
Let’s define the notion of time-observables as well-defined measures on the complex time space (). Naturally, the time-lapse distance  between a pair of kime moments  is defined by

However, there are many other ways to track or measure the longitudinal or temporal size of kime-subsets that extend to kime the common notions of length, area and volume, which we often use to measure the size of spatial subsets.
For instance, suppose the boundary of a kime area  can be parameterized as a curve describing the radial displacement  of kime points  along the (simple closed curve) boundary from a reference point 

Then, the kime-area measure is
$$\mu(A) = \iint_{\mathbb{C}}{
\underbrace{\ \ \chi_{A}(\kappa)\ \ \ }_{characteristic \\ function}d\kappa}
\overbrace{\ \ \  = \ \ \ }^{Green's \\ theorem}
\frac{1}{2}\int_{- \pi}^{\pi}{r^{2}(\theta)d\theta}\ 
\overbrace{\ \ \  = \ \ \ }^{???}
\frac{1}{2}\int_{- \pi}^{\pi}{r^{2}
\underbrace{\ \ f_{\Theta,r}(\theta)\ \ }_{phase\ density}d\theta}\ .$$
Problem: Use Green’s theorem to derive a kime-area measure using the angular phase distribution density function, . Initially, we can assume that the phase-density is independent of the time magnitude, i.e., , but later we may need to potentially consider densities that are time-dependent.
Proof Outline

Using the polar coordinate transformation ,
$$\mu(A)=\iint_A {p(da)}=
\iint_A {p(dxdy)}\underbrace{=}_{Green's\ Thm}
\frac{1}{2}\int_{\partial A} {\left (-yp(dx) + x p(dy)\right )} =\\
\frac{1}{2}\int_{\partial A} {\left (-r(\theta)\sin(\theta)
p(r(\theta)\cos(\theta)) + r(\theta)\cos(\theta) p(r(\theta)\sin(\theta))\right )} =\\
\frac{1}{2}\int_{\partial A} {r^2(\theta)p(d\theta)}=
\frac{1}{2}\int_{\partial A} {r^2(\theta)f_{r,\theta}(\theta)d\theta}\ .$$
[image: https://wiki.socr.umich.edu/images/a/aa/Angular_PhaseDistributionDensityFunction.png]
Angular Phase Distribution Density Function
The importance of defining a proper (Lebesgue?) measure  on kime is that this would naturally lead to formulating likelihoods on the space of complex time. In other words, as all observable and predictable time is finite, and the phase distribution in well defined, a properly defined measure  on kime can be normalized and extended to a kime probability measure  that is absolutely continuous with respect to , .
In a statistical and computational data science context, the kime-space probability measure  facilitates modeling random experiments involving observing repeated samples from controlled experiments (reflecting the kime-phase distribution) across a range of time-points (kime-magnitudes). Suppose the kime sample space  consists of all possible observable or predictable outcomes of the experiment (cf. light cone), including outcomes that have trivial probability of occurring, . Kime-events (kevents) are measurable subsets  and the entire collection of kevents forms a -algebra on . Each kevent is associated with a probability  and the -algebra on  has a natural interpretation as the collection of measurable kevents about which information is observable.
Example 1 (Poisson-Laplace kime probability measure)
Consider the following kime sample-space
$$\Omega = \underbrace{\ \ \ \left\{ t \in \mathbb{z|}t \geq 0 \right\}\ \ \ }_{
T\ (time) \\ kime - magnitude} \times 
\underbrace{\Theta_{\lbrack - \pi,\pi)}(\theta)}_{kime - phase \\
(distribution) }$$
equipped with the following (joint kime distribution density) Poisson-Laplace kime probability measure

The (first marginal) temporal distribution is  with point mass (PMF, ) and cumulative distribution (CDF, ) functions

Below, we show that the (second marginal) phase distribution is the truncated  distribution on  with the following PDF and CDF


$$\underbrace{\ \ F_{\Theta}(\theta)\ \ }_{(unconditional) \\
Laplace\ CDF} = \left\{ \begin{matrix}
\frac{1}{2}e^{\theta},\ \ \theta \leq 0 \\
1 - \frac{1}{2}e^{- \theta},\ \theta \geq 0 \\
\end{matrix}\ \ ,\ \ \  \right.\ $$


Hence, the joint kime distribution density and distribution functions are defined by
$$\underbrace{\ \ \ f_{\kappa}\ \ \ }_{PDF}\left( te^{i\theta} \right)
\underbrace{\ \  \equiv \ \ }_{probability \\
\ chain\ rule}\nu(t)f_{\Theta}\left( \theta \middle| t \right)
\underbrace{\ \  = \ \ }_{T\bot\Theta}\left( \frac{\lambda^{t}}{t!}
e^{- \lambda} \right) \cdot \left( \frac{e^{- \theta}}{2}\chi_{\lbrack - \pi,\pi)}
(\theta) \right),\ \forall(t,\theta) \in \mathbb{R}^{+}\mathbb{\times R\ ,}$$


Below we derive the truncated Laplace PDF and CDF. Recall that a Laplace random variable,

has Laplace (double-exponential) distribution, which is infinitely supported and has the following probability density (PDF) and cumulative distribution (CDF) functions

[image: https://wiki.socr.umich.edu/images/c/c5/PoissonLaplace_KimeProbabilityMeasure_.png]
Joint Poisson-Laplace Kime Probability Measure
Restricting the (kime-phase) variable  to  naturally truncates the probability density and the cumulative distribution functions to the same interval. Over ,


where  and  is the characteristic function (indicator) over the phase domain . The truncated density is a density function since the denominator  is the appropriate constant with respect to  which ensures that the density integrates to 

[image: https://wiki.socr.umich.edu/images/7/7a/PoissonLaplace_KimeProbabilityMeasure_P2.png]
Joint Poisson-Laplace Kime Probability Measure with strong linear correlation between the pair of univariate processes .
Show/derive the fundamental relationship between the kime density and kime cumulative distribution functions

The SOCR bivariate distribution app, see see pubs can be employed to display an interactive 3D scene illustrating this instance of a Poisson-Laplace kime probability measure ()

The first graph shows the kime-density for . For simplicity of the 3D visualization, the 2D density surface is cut at the periodic phase boundary (), and shown over the right half plane. However, the density may also be wrapped around and stitched into a continuous surface.
When  are not independent, the joint density does not factor as the product of the marginals and the Poisson-Laplace kime probability measure would be computed via a copula model [^5]. In this situation, the density surface will have a different appearance, as shown below assuming a strong linear correlation between the pair of univariate processes .
Generate 2D plotly visualizations [^6] of the Poisson-Laplace kime probability measure for some specific examples of kime-regions with simple-closed curve boundaries:
· Folium of Descartes: .
· Ellipse:  or  .
· Disk-sector annulus: 
ParametricPlot[{v Cos\[u\], v Sin\[u\]}, {u, 0, Pi/3}, {v, 1/2, 1}]
· Phase space of a solution to the Lotka–Volterra predator-prey equations:
NDSolve[{y\'\[t\] == y\[t\] (x\[t\] - 1), x\'\[t\] == x\[t\] (2 -
   y\[t\]), x\[0\] == 1, y\[0\] == 2.7}, {x, y}, {t, 0, 10}\];
 ParametricPlot\[Evaluate\[{x\[t\], y\[t\]} /. First\[%\]\], {t, 0, 10}]
· Negative curvature disk: 
parametric plot (cos^3 t, sin^3 t).
Example 2 (Weibull-Hyperbolic-Secant distribution kime probability measure)
Consider another kime sample-space
$$\Omega = \underbrace{\ \ \ \left\{ t \in \mathbb{z|}t \geq 0 \right\}\ \ \ }_{
T\ (time) \\ kime - magnitude} \times 
\underbrace{\Theta_{\lbrack - \pi,\pi)}(\theta)}_{kime - phase \\
(distribution)},$$
equipped with the following (joint kime distribution density) continuous Weibull kime-magnitude with ( truncated) hyperbolic-secant kime-phase distribution leading to a different kime probability measure

The (first marginal) temporal distribution is  with density (PDF, ) and cumulative distribution (CDF, ) functions

The (second marginal) phase distribution is the truncated  distribution on  with the following PDF and CDF, which do not depend on any parameters,




Hence, the joint kime distribution density and distribution functions are defined by
$$\underbrace{\ \ \ f_{\kappa}\ \ \ }_{PDF}\left( te^{i\theta} \right)
\underbrace{\ \  \equiv \ \ }_{probability \\ \ chain\ rule}
f_{T}(t)f_{\Theta}\left( \theta \middle| t \right)
\underbrace{\ \  = \ \ }_{T\bot\Theta}$$




Again, we use the SOCR bivariate distribution app to render 3D scenes of the Weibull-Hyperbolic-Secant distribution kime probability measure for both independent  and correlated time-phase.
First is the kime-density for .

When  are correlated, e.g., , the joint density does not factor as the product of the marginals and the joint kime probability measure would be computed via a copula model.
Note that both joint kime probability measure plots are in Cartesian coordinates. In fact, plotting them in polar coordinates will represent the corresponding kime-surfaces.
Other Examples. Consider adding additional examples of kime probability measures, using the continuous Weibull distribution, Logarithmic distribution, discrete Weibull distribution, etc., for the kime-magnitude (time) marginal, which is coupled with Laplace or another zero-mean and symmetric probability phase distribution for the kime-phase marginal distribution.
[image: https://wiki.socr.umich.edu/images/a/ab/Weibull_HyperbolicSecant_KimeDistribution.png]
…
Notes
As an alternative to outputting a random phase, , we can consider the action of the linear kime-phase Hermitian operator  as
$$\underbrace{\ \ \ \widehat{\mathcal{P}}\ \ \ }_{Hermitian \\
operator }
\overbrace{\ \ \ \ \Psi\ \ \ \ \ }^{distribution} = 
\overbrace{\underbrace{\ \ \ \psi(x,t)\ \ \ }_{wavefunction}}^{eigenstate}
\overbrace{\ \ \ \Psi\ \ \ }^{distributon}\ .$$
Note: Explore formulating the kime operator using the Radon-Nikodym distributional derivative.
Recall the discussion earlier about formulating the partial derivative,  as a Radon-Nikodym derivative with respect to the kime-phase distribution,  or the distribution of the phase-change, .
Assume the wavefunction of a particle is  and .
· In the most general case, there may be other (exogeneous) variables, , e.g., phenotypes, traits, subjective characteristics, and objective measurements, that are complementary (independent or correlated variables) to the main observable (outcome) measure, e.g., momentum, energy, spin, etc. Such higher-dimensional predictions represent natural generalizations of the simpler spatiotemporal functions, , to .
· Some relevant resources are included below
· paper 1
· paper 2
· SOCR Bivariate/Trivariate Distribution Calculator App
· paper 3
· DSPA Appendix 3 (Geometric & Parametric Surfaces
· Discrete Weibull distribution
· Logarithmic distribution
· Weibull distribution
· Symmetric probability distributions
Derivation of the kime-operator and energy-kime uncertainty
Following the 1961 work of Aharonov and Bohm, perhaps we can consider formulating a kime-operator and elevating time from a c-number (classical number variable) to kime as a q-number (quantum operator). Whereas the fundamental algebra of c-numbers is commutative (multiplication over the base field of the Hilbert space is commutative), e.g., , the arithmetic over q-numbers is in general non-commutive, e.g., .
Let’s start with the assumption that the energy (Hamiltonian, ) and the kime () operators are conjugate q-numbers, i.e., correspond to canonically-conjugate c-numbers (energy and kime) and

Pauli’s fundamental objection to the existence of a time operator  is based on  and the discrepancy of the bounded below values of the eigenvalue spectrum of  (observed energy values have to be positive), whereas  did not have an apparent lower limit on its eigenvalues.
For a particle of mass , the classical relation between , i.e., , can be generalized to complex time

where the kime-phase  represents the repeated sampling from the same process under identical conditions at a fixed spatiotemporal location, e.g., fixed .

Express the momentum as . How can we formulate the kime-operator? This approach does nto work since  is not a constant and there is a missing negative sign in the commutator relation:


We may need to rethink this as the momentum is a kime-vector, not scalar, and  is not a constant , see the TCIU Book Dirac Equation section (Chapter 3 Appendix, pp.178+).
Perhaps even start with the energy-operator (the Hamiltonian), . In spacekime, the total energy of the particle has two components and is represented as an energy magnitude:

where  and  are the two energy components of the particle defined with respect to kime dimensions  and , respectively. Here , see  and 
· Can we think of the Hamiltonian (i.e., energy) as the generator of time translations}? If so, a complex eigenvalue of the Hamiltonian implies that there is some decay –  particle disappear, while  particle appear, see p.148 of Landau & Lifshitz (Quantum Mechanics),

At the initial state,

and at the end state

By complexifying the energy (adding the term ) to model eigenstate decay (fast particle disappearance), , we can represent the lifetime of an energy state, i.e., the lifetime of the particle is ,

The energy eigenvalues of a Hermitian Hamiltonian  are real, since the operator  is unitary, cf. law of total probability, i.e., the sum of the likelihoods of observing some energy eigenstate always remains .
One important note is that a Hermitian operator acting on the space of square-integrable wavefunctions () must have real eigenvalues. However, this is not the case if we relax the conditions on the state-space. For instance, a Hermitian operator can have complex eigenvalues for non-square-integrable functions. For any , the operator  has an eigenspectrum (), since
$$\underbrace{- i\frac{\partial}{\partial x}}_{operator}e^{ax} = -i a e^{ax}
\underbrace{\ \ \  = \ \ \ }_{eigenvalue \\ problem} \ z_{o}
\overbrace{\ \ \ e^{ax}\ \ \ }^{eigenfunction}\ ,$$
hence, , and . Clearly, the operator  is Hermitian and the eigenvalue  is properly complex, not necessarily real, however, this is because the eigenstate/eigenfunction is outside of the proper space, ! So, the non-observability, not-realness, of the viable complex eigenvalue is related to the fact that in this case the operator is applied out-of-scope!
In general, a bounded, linear self-adjoint (Hermitian) operator on an infinite dimensional Hilbert space, e.g., , cannot be guaranteed to have any eigenvalues, and hence, there may not be an orthonormal bases of eigenfunctions over the Hilbert space. The multiplication operator provides a counterexample for the bounded, linear self-adjoint (Hermitian) operator :

Assuming

and  has no eigenvalues.
Theorem: Given a bounded, self-adjoint (Hermitian) operator 
· All eigenvalues must be real, and
· All different eigenvectors are orthogonal.
Proof following these notes Chapters 8-9:
· Suppose , and  is the corresponding eigenvector, . Then, .
· If , and , , then,

Note: Given any self-adjoint operator, its eigenvalue spectrum is the reals, , a spectral superposition of point discrete spectrum eigenvalues and a continuous spectrum eigenvalues Edgar Raymond Lorch (2003). Chapter V: The Structure of Self-Adjoint Transformations. Spectral Theory, p. 106 and these notes. Hence, a kime-operator can’t be self-adjoint (Hermitian), as in general,

Even though, on average, the phase-distributions are zero mean, i.e., they have trivial expectations . This ties up to the fact that the if a complex number is an eigenvalue for a bounded linear operator , then its conjugate is also an eigenvalue of the same operator. In other words, if , then . Hence, there is a balance between operator eigenvalues corresponding to positive and negative kime-phase arguments, , and therefore the phase distribution  is symmetric and zero mean.
Could the expectation value of a kime operator  be the time-evolution operator ?
Note: About the spectrum of an infinite-dimensional operator, which contains the eigenvalues – some of the spectrum elements may not be eigenvalues. Let’s start with a bounded operator  on the Banach space , e.g., . The spectrum  is a disjoint union of 3 parts:
· The point spectrum of eigenvalues: , with ,
· The continuous spectrum: , with , and the range of  is dense in , but it is not equal to , and
· The residual spectrum: of , , and the range of  is dense in .
The entire spectrum is always non-empty, , there are operators with empty point spectrum. For instance, we saw the multiplication operator earlier.  and  is the multiplication operator , then , and each  is in the continuous spectrum of the operator .
Here is an example of a family of non-Hermitian linear operators  with properly complex eigenvalue spectrum, :

where  is not Hermitian,  and their complex eigenvalues are , . Then, the eigenvector  corresponds to the complex eigenvalue , where

This paper of Ari Laptev and Oleg Safronov computes eigenvalue estimates for Schrodinger operators with complex potentials. Also, this blog post shows interesting counterexamples for linear operators on infinite dimensional vector spaces and their eigenvalues, e.g.,
· The Volterra operator  maps continuous functions to continuous functions, but  has trivial null space, , So . Also, if , then  and . Since, , we have .
· The multiplicative operator we saw earlier, for any ,

Note the critical advantage of this kime-operator  formulation – the importance of removing the main drawback of the corresponding time operator  which is singular in momentum -space!
The kime-operator  is well defined for any pair of position  and mokiphase , where the momentum-kime-phase (mokiphase) operator reflects the difference between the phases of the momentum () and kime ().
Next, we’ll try to prove the enigmatic uncertainty for energy and kime (extending time), . In general, for a pair of non-commuting observables, , Heisenberg uncertainty relation is

The momentum encodes the bi-directional speed of the moving particle (electron) indicating its rates of change in position, relative to the two kime directions, as observed from a particular frame of reference and as measured by a particular kime coordinate framework.
Notes on Dirac’s bra-ket notation
· The vector (Hilbert) space  is over the complex filed , and linear operators .
· We use bra-kets to distinguish between *vectors}  (kets) and their duals (bras) , .
· Inner-products are scalars in the base-field, .
· Outer-products are linear operators, in the dual-space, , , where .
· The adjoint is , , , and .
· Operator characteristic equation .
· Chance of basis,  
· Position space representation … 

· Momentum space representation … 

· Chance of basis (position-momentum bases) 

(IFT), and similarly,
 (FT).
In the eigenvector bases (for the position & momentum),
· Position operator


· Momentum operator


· In position space representation, the momentum operator is



· To formally derive expressions of the position operator, , and the momentum operator, , we expand the operators in the complementary basis.


· Similarly, in momentum space, the position operator is


Questions
· Is there a relation to the Girsanov theorem, which relates the Wiener measure  to different probability measures  on the space of continuous paths and gives an explicit formula for the likelihood ratios between them.
R Code
N <- 10000

xNu <- extraDistr::rlaplace(N, mu = 0, sigma = 0.4)
yNu <- density(xNu, bw=0.2)
xMu <- extraDistr::rlaplace(N, mu = 0, sigma = 0.5)
yMu < density(xMu, bw=0.2)

# Correct second Laplace Density to ensure absolute continuity, nu<<mu
yMu$y <- 2*yMu$y

plot_ly(x = xNu, type = "histogram", name = "Data Histogram") %>%
  add_trace(x=yNu$x, y=yNu$y, type="scatter", mode="lines", opacity=0.3,
             fill="tozeroy", yaxis="y2", name="nu, Laplace(N,0,0.4) Density")  %>%
  add_trace(x=yMu$x, y = yMu$y, type="scatter", mode="lines", opacity=0.3,
             fill="tozeroy", yaxis="y2", name="mu, Laplace(N,0,0.5) Density")  %>%
  layout(title="Absolutely Continuous Laplace Distributions, nu<<mu",
         yaxis2 = list(overlaying = "y", side = "right"),
         xaxis = list(range = list(-pi, pi)),
         legend = list(orientation = 'h'))

integrate(approxfun(yNu), -pi, pi) # 1.000199 with absolute error
# 7.6e-05

integrate(approxfun(yMu), -pi, pi) # 1.997212 with absolute error
#  0.00023
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