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TABLE 2. Subl'olulIle Thresholdillg global STaTisTical TeSTS all subTracTioll paradigm for ''fillger-Trackillg'' sTudy 

Region of interest 

Statistic Cerebellulll Frontal Occipital Parietal Temporal Insula Thalamus Caudate Putamen 

Global 19.14 12.46 12.33 0.71 3.03 2.87 5.75 2.98 

.:: score 

A high.:: score inclicalcs thai there are significant group diffrences between left- and righI-hand mOlOr tasks over the particular region or interest. 

tion in the entire ROls. We see that all ROls are globally 
activated except the temporal lobe. Note that the cerebel­
lum was excluded from this study due to data truncation 
in this region. The results of the second (local) SVT 
statistical testing identified the locations of the signifi­
cant group differences in this subtraction paradigm (Fig. 
3). Axial, coronal. and sagittal views of the statistically 
significant perfusion for the "left-right" (L-R) and "right­
left" (R-L) contrasts are depicted in Fig. 3. As expected. 

A 

c 

E 

the first subtraction activates the subjects' right premotor 
and motor cortex. The "right-left" contrast exhibits sig­
nificant activation in the subjects' left motor cortices. 

Table 3 contains the Talairach coordinates and the 
corresponding � scores of the centers of activation, in the 
primary motor cortex, as shown in Fig. 3. Positive and 
negative z scores correspond to positive and negative 
contrasts (i.e .. L-R and R-L) for the "left-right" finger­
tracking task, respectively. 
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FtG. 3. Sagittal, coronal, and axial 
views of the subvolume thresholding 
(SVT) statistical significance differ­
ence maps comparing left- versus 
right-hand finger-tracking task. Im­
ages A and B show the right and left 
hemispheres and the SVT maps for 
the left minus right hand (L-R) and 
right minus left hand (R-L) paradigms, 
respectively. Coronal views of the 
same activation differences are 
shown in images C and D. Bilateral 
simultaneous activations of the pre­
motor and the primary motor cortices 
for the two contrasts (L-R and R-L) 
are illustrated in transverse views on 
the bottom two images, E and F. 
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TABLE 3. Talairach coordinates oj cenlers oj activation 
and corresponding z scores Jar some regions depicted il1 

Fig. 3 

Talairach coordinate 

Area x y z scores 

Lefl molor (4) -33 -26 40 6.7 

Left premolor (6) -34 1.5 36 22.0 

RighI molor (4) 29 -28 48 6.3 

RighI premolor (6) 24 48 7.0 

DISCUSSION AND CONCLUSIONS 

We introduce and validate the SVT technique for sta­
tistical analysis of multisubject functional data within a 
probabilistic anatomic atlas using a simple sensorimotor 
paradigm. We employed the anatomically subdivided 
ICBM probabilistic atlas to constrain our analysis. Fol­
lowing this partitioning step, two types of statistical tests 
were applied. The first separates the SVT method from 
other techniques of functional statistical analysis and is 
aimed at determining the global significance of the dif­
ferences between two groups over each search region 
separately. Depending on the anatomical structure and 
topology of a subvolume of interest, we determine an 
estimate for the pooled variance of the average across 
subjects and voxels. These estimates are then used to 
assess the globally significant variability of the data 
within each ROJ. 

The second step in statistical testing maps locally the 
voxels of significant functional group differences in each 
globally activated ROJ. This is a standard procedure in 
most techniques for functional statistical mapping. SVT 
differs from other appraoches in two ways: First, voxel 
location tests are run only over the search regions of high 
significance levels according to the first global test re­
sults, and second the variance estimates are pooled over 
subjects and across voxels (longitudinally-meridianally). 

In the SVT model, morphological and spatial registra­
tion differences between any two functional data sets are 
accounted for by using a probabilistic atlas that associ­
ates a probability value to each voxel to accommodate 
anatomic variability and registration error. Further, we 
analyze separate ROls in the difference image for acti­
vation using different stationary random field models 
and thus avoid the problem of nonuniform global activity 
and signal variance within the brain. 

The SVT method has three major assumptions: The 
difference images represent locally stationary random 
fields with Gaussian autocorrelation; the autocorrelation 
of two voxel intensities in two different subjects is inde­
pendent of the order of the subjects within the group; and 
(difference) image intensities at each voxel are normally 
distributed. These assumptions are shown to be reason­
able theoretically (based on the physics of functional 
imaging and the algorithms for PET image reconstruc­
tion) and empirically using real PET data. One drawback 
of the SVT method is that it uses the standardized mean 
to estimate global significance over ROIs. The presence 
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of positive and negative activation within an ROI may 
cause false-positive error. In practice, however, our ex­
periments (motor, education, and drug treatment subtrac­
tion studies) show that this is rarely the case because the 
probabilistic anatomic partition of the brain is driven by 
the anatomic question of the functional study. 

There are at least two other major approaches for deal­
ing with statistical mapping of functional brain data. The 
first one contains various multivariate techniques (18), 
where one obtains global statistical inference on the mul­
tivariate statistic over the entire brain but voxel-based 
analysis is not feasible (due to the number of voxels 
greatly exceeding the number of scans). Second are the 
univariate approaches. The most widely used univariate 
scheme is statistical parametric mapping (SPM) (19). 
SPM makes use of the general linear model, which in­
cludes localized t testing and linear regression and thus is 
more universally applicable for a variety of image mo­
dalities (PET, SPECT, functional MRI) and activation 
paradigms (subtractive, parametric, factorial) and a 
wider range of hypothesis testing. The SVT method, on 
the other hand, is more specialized for subtraction studies 
involving only PET and SPECT data. Whereas the SPM 
approach employs Worsley et al.'s (12) formulas for the 
expectation of the Euler characteristic of the excursion 
set above a given threshold value, a generalization of the 
theory of Gaussian field level crossing (15), the SVT 
relies on an intuitive and computationally attractive type 
of skew-Bonferroni correction for the large number of 
tests using nonindependent univariate statistics. Instead 
of fixing a p value and determining an appropriate 
threshold value for our statistical maps, we declare sta­
tistically significant the voxel locations where the uni­
variate statistics exceed the threshold associated with the 
p value of 0.05/111, where III is the number of uncorrelated 
voxels within each ROJ. This way, we avoid the problem 
of having to transform the observed t statistical image to 
an approximate 3D Gaussian random field using a uni­
variate transformation. This approximation requires high 
degrees of freedom (usually 2:::30) (J 9), which is rarely 
the case in PET/SPECT studies. Another distinction be­
twee the two methods is the fact that regional ROI sta­
tistical inferences are available through the SVT ap­
proach that are induced by the underlying anatomic 
probabilistic brain atlas. We consider a more general 
Gaussian field model where stationarity is imposed only 
locally within each ROI, and thus different subvolumes 
can, and oftentimes do, have quite different distribution 
parameters (means, variances). 

Empirical evidence for the differences between SPM 
and SVT is provided by comparing the two methods on 
the PET data discussed in Results. Figure 4 shows two 
axial views of the SPM maps (p = 0.025), which clearly 
indicate significant group differences (left- versus right­
hand finger tracking) in Brodmann areas 4 and 6. How­
ever, there are also significant differences present in 
white matter and CSF regions. 

We have also compared the SVT maps for this motor 
study with a uniform thresholding at level 2.5%. Uni-
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form thresholding at a levelr represents the lOp ro/c of the 
average difference intensity at each voxel. In other 
words, all voxel intensities are set to zero except the ones 
where the average diffrence is in the top r%. Figure 5 
illustrates in axial and sagittal views the bilateral motor 
strip and the left temporal lobe (� score 2.1) activations in 
the uniform (2.5%) statistical maps. Recall that accord­
ing to the SVT regional ROJ statistics (Table 2). the 
group differences between the left- and right-hand para­
digm are insignificant in the entire temporal lobe. 

In summary, SPM. uniform (2.5%), and SVT all cor­
rectly identify the paradigm-specific statistically signifi­
cant group di fferences (left and right motor cortex) be­
tween the left- and right-hand finger-tracking tasks. 
However. due to implicit foundational differences be­
tween these techniques (e.g .. variance estimates. assump­
tions of global stationarity), there are fine empirical 
variations in the corresponding statistical significance 
maps. 

FIG. 4. Axial views of the statistical 
parametric mapping statistical maps, 
illustrating significant right- versus 
left·hand finger-tracking differences. 
The right image shows group differ­
ences in the corpus callosum and the 
ventricles (arrows). 

APPENDIX 

Theoretical and Empirical Evidence in Support of 
SVT Hypotheses 

We now show theoretically. using the physical prop­
erties of the imaging process. and empirically, using 
plots of real PET data. that the hypotheses we make in 
our SVT model are reasonable. 

If we place a single point source of radioactive isotope 
in the center of a PET camera. the image we obtain looks 
smeared due to low pass filter processing (14) (see Fig. 
6). The smoothing kernel has a bell shape and can be 
modeled by a 20 normal distribution. There are two 
main reasons for observing (Gaussian) smooth PET im­
ages: The first is the physiology of brain function: Blood 
flow or metabolic change occurs smoothly and homoge­
neously. The second is the stochastic nature of the path 

FIG. 5. Axial and sagittal views of the uniform (2.5%) statistical maps, illustrating significant right- versus left-hand finger-tracking 
differences in areas 4 and 6 and the temporal lobe. 
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FIG. 6. Spatial Gaussian voxel intensity correlation point source isotope data (left) and observed image (right). 

of the positively charged 13 particles (from their emission 
from the nucleus to their collision with negatively 
charged electrons) and the attenuation effects causing 
nearby voxels to have highly positively correlated inten­
sities. Coupling every detector in the PET scanner with 
several other detectors in the neighborhood of its 1800 
opposite also introduces a distance-dependent autocorre­
lation function similar to a Gaussian distribution. 

To explain the rationale behind the assumption of a 
normal distribution of voxel intensities, we again refer to 
the physics of PET imaging. A PET scan is constructed 
by detecting, comparing (times/places of arrival), and 
counting dual photons emitted in the process of positron­
electron annihilation. Photon strikes can be regarded as 
random arrivals and modeled as a discrete Poisson pro­
cess. Because of the large scale of this stochastic process, 
its distributioin can be approximated by a Gaussian (of 
mean zero and some unknown variance) (17). Empiri­
cally, we demonstrate the normal structure of the voxel 
intensities by taking 500 randomly selected intensities 
(that are far enough from each other and are not signifi­
cantly correlated) of a difference image. Figure 7 shows 
the values of the differences on the left and the quantiles 
of a normal distribution (having the sample mean and 

o '" 

o 100 300 

... axels 

. ' 

500 ·3 · 1 0 1 2 3 

Quantiles of Standard Normal 

FIG. 7. Normal nature of voxel intensities: 500 randomly chosen 
(uncorrelated) differences (left) and sample/normal quantiles plot 
(right). 
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variance of the difference data) on the right. The almost 
linear relation of the data and the normal quantiles sug­
gests that the sample was drawn from a (unknown) dis­
tribution closely related to normal. A Kolmogorov­
Smirnov (KS) normality test (20) provides an additinal 
quantitative argument to this effect. We applied a two 
sample KS test to a PET volume representing the differ­
ence of the two scans of the same subject under the 
identical functional paradigm: right-hand finger-tracking 
task with LED stimulus in the subject's right visual field. 
All PET data are in ICBM space (I). Using Splus, we 
compared the distribution of 500 not-sufficiently corre­
lated difference voxel intensities (farther than 15 mm 
apart) with a sample of 500 N(O, I) normally distributed 
random variables. The KS score of 0.058 and the corre­
sponding probability value of 0.3406 indicated that in­
deed the observed data can be assumed to be Gaussian. 

A Class of Valid Covariance Models 

We now show that the covariogram we adopted and 
used is permissible (valid); that is, it is underlined by a 
legitimate probability model. In general, a continuous 
function c(h): R" � R is an admissible covariance (co­
variogram) for a stationary random field Dx on R" (15) if 
and only if c(h) is nonnegative definite,

2 
that is . 

IT 11 

for all a = (ai' a2, ... , an)' E C', where c(xk - XI) 
Cov(D", D,,) and E(D xl = fl., V X by stationarity. 

In 1984 Christakos (21) proved the validity of large 
classes of covariograrnlvariogram models, including the 
case of Kp

llhlll using the Euclidean distance. To verify the 
validity of the covariance model c(h) = Kp

llhl� for any 

2The "bar" notal ion. -, indicates complex conjugal ion throughout 
this section. 
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positive integer p, we need the following spectral theory fact (22). If the Fourier transform of an L ,  function, c(h), 
is a nonnegative L,  function c(w), then c(h) is nonnega­
tive definite. 

To see the reason behind this result, choose c(h) 
E L , (R") whose Fourier transform exists and FT(c)(w) 

= c ( w )  = fR "c ( h ) e-2- rr ;<w . h>dh, then c ( h )  = 
fR',e2";<,,,."> c(w)dw (16). Therefore, 

( . ) - J 2";« W-<k>-<"'-" » '( )d c Xk - x, - R" e c w w 

Expanding the quadratic form, 

11 11 

L L aiiic(xk - x,) 
k=1 1=' 

- " " - f 2- n·;« "·.xk>-<"'.x·'» �( )d 
" " ( ) - £.; � aka, R" e c w W 

k=' 1=1 

- J 1 � 2TI;<"'_'I> 1 2 '( )d >- 0 - ..::.. a,e c w w _  R" 1=1 

The last inequality follows from the assumption that the 
Fourier transform of c(h) is nonnegative. 

We also need to argue that if I I-I I , is  the ' ,  norm on R3, 
(l Ihl l ,  = Ih d + Ih2 1  + Ih31 ), then the function c(h) = K p"""', 
o < p < I, induces a valid covariance functional 

Cov(D " , D X2) = C(x, ,x2) = c(x, - x2) 

3 
= c(h) = Kp""" ' = K II pl"kl 

k=' 

for any po§.!!!ve constant K (in our models, we have 
used K = u7) . 

We look at the Fourier transform 

FT(c) = c(w) = f f fR3c(h)e-2TI;<".W> dh 

where a = - In(p ) and bk = 2'TTwk. Further, I Ic( w)l l , < :le. 
The last equality follows from the fact that an integral of 

an odd function on a symmetric interval is zero. There­
fore, if a is a constant, 

fR e
-�'lae-2TILnvdx = fRe-�'la[cOS(2'TTXw) 

- i sin(hxw)]dx 

= 2 f;e-Ixln cos(2'TTxw)dx 

a 
= 2 

2 2 a + (2mv) 

Therefore, we see that the covariogram induced by the 
continuous function c(il) = Kpllhll' is indeed permissible. 

Observe, also, that similar approaches could be used to 
show that any lp norm on R" would induce an admissible 
covariogram model of the type c(h) = Kpll"I�. In addi­
tion, having that c(h) is valid on R" implies that it is also 
valid on R"-\ for 0 ,;; k < 11 (21,23). 
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