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Analyzing Functional Brain Images in a Probabilistic Atlas: 
A Validation of Subvolume Thresholding 

Ivo D. Dinov, Michael S. Mega, Paul M. Thompson, Linda Lee, Roger P. Woods, 

Colin J. Holmes, De Witt L. Sumners, and Arthur W. Toga 

Purpose: The development of structural probabilistic brain atlases provides the 
framework for new analytic methods capable of combining anatomic information with 
the statistical mapping of functional brain data. Approaches for statistical mapping that 
utilize information about the anatomic variability and registration errors of a popula­
tion within the Talairach atlas space will enhance our understanding of the interplay 
between human brain structure and function. 

Method: We present a subvolume thresholding (SVT) method for analyzing pos­
itron emission tomography (PET) and single photon emission CT data and determining 
separately the stalistical significance of the effects of motor stimulation on brain 
perfusion. Incorporation of a priori anatomical information into the functional S VT 
model is achieved by selecting a proper anatomically partitioned probabilistic atlas for 
the data. We use a general Gaussian random field model to account for the intrinsic 
differences in intensity distribution across brain regions related to the physiology of 
brain activation. attenuation effects, dead time, and other corrections in PET imaging 
and data reconstruction. 

Results: H2150 PET scans were acquired from six normal subjects under two 
different activation paradigms: left-hand and right-hand finger-tracking task with vi­
sual stimulus. Regional region-of-interest and local (voxel) group differences between 
the left and right motor tasks were obtained using nonparametric stochastic variance 
estimates. As expected from our simple finger movement paradigm, significant acti­
vation (z = 6.7) was identified in the left motor cortex for the right movement task and 
significant activation (2 = 6.3) for the left movement task in the right motor cortex. 

Conclusion: We propose. test, and validate a probabilistic SVT method for map­
ping statistical variability between groups in subtraction paradigm studies of functional 
brain data. This method incorporates knowledge of, and controls for, anatomic vari­
ability contained in modern human brain probabilistic atlases in functional statistical 
mapping of the brain. 

Index Terms: Atlas and atlases-Brain, anatomy-Maps and mapping-Single 
photon emission computed tomography (SPECT)-Emission computed tomography. 

Through parallel efforts at mUltiple neuroimaging cen­
ters, the goal of constructing population-based probabi­
listic atlases (I) of the human brain is being realized. The 
need to improve on a single brain-based atlas system, 
such as the Talairach atlas (2), is motivated by a neces­
sity to account for morphologic variability in brain 
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anatomy across normal and diseased populations (3-6). 
Incorporating information about anatomic variability 
within these new atlases requires new statistical tech­
niques that integrate that variability in the assessment of 
functional imaging data. The International Consortium of 
Human Brain Mapping (ICBM) has constructed a proba­
bilistic human brain atlas derived from young normal 
subjects (3), which now permits the testing of statistical 
mapping algorithms designed to answer the present, and 
future, functional brain-mapping needs. 

We demonstrate a robust technique for modeling and 
analysis of positron emission tomography (PET) data 
using a probabilistic 3D atlas reflecting anatomical, geo­
metrical, and functional aspects of the brain systems un-
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der study (3,7). Following a statistical analysis of global 
activation, we apply local statistical significance tests to 
each voxel intensity within the globally activated regions 
of interest (ROls) according to the preceding global 
analysis. 

Our method uses multiple scans of the same or differ­
ent subject(s) and determines appropriate threshold val­
ue(s) for different regions of the brain depending on their 
size and geometry. It also uses a general stationary ran­
dom field modeling of the noise factor so that every 
probabilistically defined region is studied separately. 

Signal variance estimates are the foundation of the 
analysis for determining the statistically significant 
changes of functional activity. In functional imaging, 
there are at least five major sources of error in variance 
estimates (8): first, spatial brain-positioning differences 
between the activation and the baseline scans; second, 
using an inadequate statistical model; third, differences 
in global activity in various regions of the brain; fourth, 
the effects of intersubject intensity variability (for mul­
tiple subject studies); and finally, the limited resolution 
of the imaging equipment (8). 

In the subvolume thresholding (SVT) technique, the 
above potential errors are addressed as follows: Proba­
bilistically defined ROIs will control for small local mor­
phological (structural) differences between activation 
and baseline images for the corresponding ROI after a 
rigid-body. affine, or nonaffine warp is performed (9). 
Modeling the signal in different ROIs as separate sta­
tionary random fields accommodates nonuniform global 
activity within the brain. The ROIs, mapped as probabi­
listic (cloud-like) fields, anatomically partition the target 
atlas. In this article, we consider subtraction paradigms, 
where one seeks to identify and interpret differences be­
tween two groups of subjects divided by their activation 
stimuli. To estimate the variance of the difference data, 
we use a dual (hybrid) longitudinal-meridianal approach; 
variance is pooled across subjects and across voxels. Dif­
ferences in global activity between groups are resolved 
by intensity normalization. This equalizes the means of 
the functional data across subjects. Last, the smearing 
effects of the PET cameras are accommodated by adopt­
ing a Gaussian random field model. The blurring of PET 
imaging devices can be accurately modeled by a normal 
smoothing filter with certain (measurable) variance re­
lated to the full width at half-maximum (FWHM) (10). 

Given the development of current and future probabi­
listic atlases for various populations, we have developed 
a new statistical mapping procedure for functional imag­
ing data that incorporates the anatomical information 
contained in these brain atlases. We validate the SVT 
technique with a simple finger-moving task. 

METHODS 

In our study, we have employed a probabilistic parti­
tioning based on the ICBM atlas (3). This stereotactic 

human brain atlas was produced using 305 normal sub­
jects (25-35 years old) and includes the following nine 
ROls: the cerebellum, the left and right frontal, occipital, 
parietal, and temporal lobes, putamen, caudate, insula, 
and thalamus. A probability map was assigned to every 
voxel in each ROI, or subvolume, that reflects the chance 
that on average this voxel location falls within the ROI. 
Thus, each ROI is a cloud-like structure with probabili­
ties of I deep inside the subvolume and decreasing prob­
abilities associated with voxels toward the ROI bound­
ary. Figure I shows sagittal, coronal, and axial views of 
these structures. 

Data Acquisition with Preprocessing 

Informed consent was obtained from all subjects, and 
the study protocol was reviewed and approved by the 
UCLA Human Subject Protection Committee. H2'S0 
blood flow PET data were acquired from six normal 
volunteers using a Siemens/Cn 831-08 tomograph 
(Siemens, Hoffman Estates, IL, U.S.A.) under a left- and 
right-hand finger-tracking task with visual stimulus (II). 
The PET camera generated eight direct planes and seven 
cross-planes with an interplane distance of 6.75 mm for 
each volumetric data set. The six subject were scanned 
twice for each motor task using 10 mCilinjection of 
H2,s0. The stereotactic 3D PET data were reconstructed 
using a Shepp reconstruction filter with a roll-off fre­
quency of 0.16 mm-

I
, resulting in volumes with FWHM 

of 6.1 mm. Attenuation corrections of f.L = 0.151 cm-
I 

for skull and f.L = 0.095 em-
I 

for soft tissue were used 
for the reconstruction. The axial data dimensions were 

FIG. 1. Nine probabilistically defined regions of interest: part of 
the International Consortium of Human Brain Mapping anatomic 
atlas. 
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1 28 x 128 x 55 pixels with pixel size of 1.75 mm. The 
corresponding reconstructed volumes were aligned to 
one of them, randomly selected, using an affine 12 pa­
rameter automated algorithm (9). Then, the average of 
the 12 prealigned PET volumes were registered to the 
ICBM atlas (3), again by a 12 parameter affine registra­
tion. Combining the warping fields, with a single reslic­
ing, all the data were registered in ICBM space. Finally, 
a global (linear) intensity normalization was performed 
within each of the two groups to equalize the overall 
means of the PET data. 

Subvolume Thresholding 

For notational purposes let X� and X;, for I � a,r> N, 
represent the coregistered observed (functional) data of 
the subjects in the two groups of interest, paradigm I 
(left-hand finger tracking) versus paradigm 2 (right-hand 
fi�ger tracking). More precisely, X� = X;,.(i.j.k) and X; = 
X� (iJ' k) on a 3D gnd of voxels. ". I 2 Let Dl = Xl - Xl (Dl = Dl.(i.j.k» be the lth randomly 
paired difference data. Suppose also that we impose an 
anatomically relevant partitioning on the common do­
main of our functional data after spatial registration. We 
think: of the spatial domain of the data, Dom(D), as being 
a disjoint union of subsets, Dom(D) = �� I Dom(Dm) 
(Fig. 2). Depending on the particular hypothesis, a par­
titioning scheme may be selected in which domain sub­
sets are topologically connected or disconnected. The 
latter case is applicable for studying regions only func­
tionally connected. For example, attenuation effects, 
dead time, and other corrections in PET or single photon 
emission CT (SPECT) imaging and data reconstruction 
lead to differences in voxel variances between the white 
matter and grey matter. Thus, one may adopt a proper 
brain segmentation procedure to analyze statistical sig­
nificance over the three tissue types differently, exploit­
ing the intrinsic differences in voxel variability. The 
reader may think of the domains of the partitioned sub­
images as rectangles or parallelepipeds (in 20 and 3D, 
respectively). 

The SVT technique determines whether there are sta­
tistically significant differences between two groups of 
data within each ROl, or subdomain Dm, and, if so, pro­
ceeds to locate the activation sites (voxels). 

First, consider one separate subdomain, Dm. Neighbor­
ing voxel intensities in functional imaging are highly 
correlated due to imperfect resolution of the imaging 
equipment, noise effects, and the physiology of brain 

FIG. 2. Geometric (left), specific anatomic or anatomic average 
(middle), and probabilistic (right) partitioning schemes. 
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activation. We assume that a Gaussian autocorrelation 
function governs this spatial intensity dependence. More­
over, we assume that in a subtraction paradigm study, the 
autocorrelation of the voxel intensities in two different 
subjects is independent of the ordering of the subjects 
within each group. Let the effective spatial resolution of 
the scanner, FWHM (12), in dimension i be Us mm, the 
voxel size in dimension i be Xi mm, Us = max {us} I � 
i � 3, and X = min {Xi} 1 � i < 3. Then two intensities, 
at voxel locations VI and V, + h, hE R3, are not signifi­
cantly correlated if the distance between them is d(v" V, 
+ h) 2: ho = [u,.lx], where loJ is the greatest integer 
function [Cov(Dv ' Dv + ,,) � Kpho, for some 0 < p < I]. 
Voxels farther apart than the FWHM may be regarded 
as uncorrelated. Let I lhl� = LilhlP, for p = 1, 2,3, .. . be 
the regular p norm on R3 For the covariance model 
we discuss later Cov(D D ) = e(h) = Kpllhl� = , , VI' vl+h 
Ke-lIhIPn( ' lp), we can derive a relationship between the 
spread (FWHM) of the Gaussian autocorrelation and the 
parameter p. Let h, = 3 [2 In(1/p)r'; then correlation 
between voxels V, and V, + h is small if h, � ho. This 
equation degicts an approximate relation between p and 
Us: P � e-3 ho• The larger the u" the smaller p and the 
larger the size of the Gaussian smoothing kernel. Con­
versely, the smaller us' the larger p and the smaller the 
autocorrelation spreading kernel. In the present PET mo­
tor activation study, all data have been affinely registered 
and analyzed in the common anatomical ICBM space 
(3), where the voxel size is I x 1 x I mm3, the maxi­
mal FWHM (us) of the PET camera is 6 mm, and the 
kernal parameter p � e-'/4 = U.7788UUn. In general, 
for nonisotropic FWHMs, one can use the (positive 
definite) tensor T = (us, 0 % us, % 0 us) to define a 
metric I lhll� = hTrl h. Then the covariogram becomes 
Cov(Dx, Dx +h) = Kpllhll;, which allows for a more flex­
ible model. ' 

A reasonable estimate' of the variance of the differ­
ence data over D"', utm is the subsample variance of a 
random collection of voxels (I) within the domain 
Dom(D"') that are far enough apart from each other to be 
spatially un correlated (see below). These random voxels 
are chosen according to the underlying anatomic prob­
ability distribution associated with the particular ROl: 

where 

a�= --
D Nxl/l 

2: [D/"(x) - Dmf 
xel 

15/5N 

I 
Dm " D1"'(x) =

Nxlfl L-x E / 
1'5. 1"5 N 

I The common "hat" nmaLian, A, is used for estimated quantities. 
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Under normal assumptions, for voxel intensities, we do 
voxel-wise z tests (for x E Dm): 

N 

liN 2:D/"(x) 

to determine the location of the statistically significant 
sites of activation within Dm. Note that the normal as­
sumption for Zx is usually justified because of the large 
degrees of freedom. If this is not the case, one typically 
employs standard t testing. 

Because of the large number of tests (the number of 
voxels within a search region may be larger than 218), we 
will correct for the increasing false-positive test error by 
testing at a significance level c:xo = c:x/Ill, where III is the 
approximate number of voxels (within the search region) 
that are uncorrelated (farther apart than 2 x FWHM). The 
initial significance level is set at c:x = 0.05. To correct for 
inhomogeneity of the subtraction data across different 
brain regions and for multiple comparisons, we employ a 
twofold approach: First, we determine if there is a need 
to conduct a voxel-by-voxel search for activation inside 
Dom(Dm) by identifying the regions Dom(Dm) in which 
global activation is present at c:x = 0.05 The globally 
activated subvolumes Dm will then be the only domains 
subjected to the second local search. We begin by esti­
mating the standard deviatioin of the sample average 
within a selected subvolume, 

I 
lY"= --­Nx nWt 

2: D/"(x) 
xeDI1I 

1 s/sN 

where 11'0' is the total number of voxels in the domain of 
the subvolume Dm. Using the standard error aD"', we test 
the subvolume D"', as a whole entity, for activation sig­
nificance. 

Our model includes three fundamental assumptions. 
The first is that neighboring sites (voxels) have Gaussian 
autocorrelation depending on the distance between them. 
This assumption is sometimes violated (13,14) due to 
negative side lobes in the x,y plane and frequency-space 
truncation filtering in the process of PET image recon­
struction. The second implicit assumption is that under 
the null hypothesis, the intensities at every voxel of the 
difference images are normally distributed with mean 
zero and some unknown variance. The last hypothesis is 
that the autocorrelation function of the intensities at two 
locations (XI and x2) of two different subjects does not 
depend on the choice of the subjects within each group. 
Hence, the covariogram Cov[DI (XI)' Dix2)] is invariant 
under the action of the group of permutations on the 
subject indexes k and l. This assumption is natural be­
cause if the autocorrelation function does depend on the 
subject indexes, then it will depend on the ordering of the 
subjects in each group that will make our final group 
statistical significance maps heavily dependent on posi­
tion of the subjects within each group. Such a conclusion 

would clearly jeopardize the validity and uniqueness of 
the results. Therefore, the autocorrelation function of the 
model has the property 

Cov[D/xl), Dk(X2)] = Cov[DI (xl), DI(X2)] = Kp"(x,.x,) 

for any I and k, where d(xl, x2) is a distance function on 
R3 In Appendix, we show that the other two assumptions 
are reasonable. 

Estimates of Variances 

For simplicity of notation, we will be suppressing the 
superindex m and regard lY" as a whole new image, D. 
Assume that our data is a stationary Gaussian 11-
dimensional random field D, (15), where 11 = 2,3 for 2D 
or 3D image data. Then D has constant (across-voxel) 
mean E(DJ = f.l = const, for all X E R" and a spatial 
autocorrelation functioin of the form Cov(D", Dx

,) = 
C(x l , x2) = C(XI - x2), where C : R" � R. Let XI = 
(i I ,j Ill), X2 = (i2,j2,k2), and d(x I , x2) be the I" distance 
on R . Sometimes, there are computational advantages to 
using distance functions other than the common Eucl id­
ean distance (/2)' Besides the fact that all metrics on a 
finite dimensional space are equivalent (16), certain ex­
act variance estimates are tractable and computationally 
feasible. Suppose Cov(D", Dx

,
) = a1p"(X,-,,), where, as 

before, p is a measure of the smoothing autocorrelation 
kernel. This covariogram is, in fact, valid; that is, it is 
positive definite and induced by a legitimate Gaussian 
probability (see Appendix). If the domain of D is a cube 
(square is 2D) of size 11, then the total number of voxels 
in Dom(D) is 11'0' = n3 (n,o, = n2 

in 20) and 

Define 

A = 2: a1p"(X I .X2 ) 
.\,"!,x2EDorn(D) .. q *_\'2 

(I) 

then one can derive explicit closed forms for Var(O) in 
2D and 3D in the case of rectangular-type partitioning, in 
terms of 1110, and p (17). In 2D under the II metric, A2 
( = A) can be expressed as 

A -
4
a� 

([p(n-I) 
p2 

I - P"-
IJ2 

2 - D I - P (I _ p)2 

+ n 
[p(n - I) _ 2 I - p,,-I ] ) (2) 

I - p P (I _ p)2 
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The corresponding nplicit formula in 3D case (cubical 
search region) for a1J = <p(p) is 

where 

- I -
<p(p) = a� = -2- (nlOla� + A3) ntot 

A _ a2 ( 23 [ p(n -I) 2 _I _-_p_" --:-
I ] 3 

3- D I-p P 
( l _ p)2 

2[p(n - l) 21-P"-1] 2 
+ 3n2 

I - P ? - P (I - p)-

+ 3n22 [ P(
l

n - I) _ p2 I -p"-� ] ) 
-p (I-p) 

(3) 

For more complex regions, such closed mathematical 
expressions of the variance estimates are not available. In 
this case, one writes 

a� = Var(15) = Var (N x
l
n :L DtCX) ) 

tot xe Dom(D) 
1�':5N 

where Pk = 1{(XI,x2): xl,x2 E Dom(D), d(XI,x2) = k}l 
and diam(D) = max {d(x I ,x2): x 1,x2 E Dom(D)} is the 
usual diameter of the subvolume D. There seems to be no 
simple closed form for the factors P k for an arbitrary 
region D. Also, for computational purposes, it is not 
feasible to do an exhaustive search throughout the do­
main of D. In our tests, we have used stochastic approxi­
mations of Pk, Vk (under 12 and II distances) that yield 
stable estimates. For a structural probabilistic partition­
ing, our stochastic algorithm selects random voxel loca­
tions, within each ROJ, according to the associated prior 
probability map. We define the expressions 

I d;am(D) 

CF=-2- :L pkpk 
I1tol k=O 

as correction factors. These are scaling factors needed to 
. 2 - - 1/2 estImate aD' aD = aD (CF) . 
Because D, - N(O,ab), Vx, and 15 - N(O,a�), we 

standardize 15 to determine, using a z test, whether acti­
vation occurs within the whole (sub)domain D. As a 
result, only if the test statistic (under the null hypothesis 

Ho: J.LD = 0) 

is large enough will we search through D voxel by voxel 
to determine the location(s) of the activation site(s). For 
this, we use t or z tests, as we described previously. 

The simulated correction factors for all ROJs are uni­
formly bigger than their exact counterparts; however, 
their errors are all within I %. Table I contains the values 
of both types of estimates of the CFs for the nine ROIs 
rescaled by a factor of 106 Here, the random search 
picked I of 1,000 voxels. 

The above technique for determining the significant 
regions of activation allows variable thresholding of 
functional data on different anatomical regions of the 
brain defined within the probabilistic atlas. In general, 
the activation sites found by this method may not be 
present on a simple globa t statistic image, nor will all of 
the (uniform) t statistic voxels appear among the activa­
tion sites determined by the SVT technique. 

RESULTS 

We applied the SVT technique to identify and statis­
tically analyze the differences in a left versus right fin­
ger-tracking subtraction paradigm under visual stimulus. 
The goal of the study was to map, using an underlying 
probabilistic brain atlas, the effects of the finger move­
ment motor task on cerebral perfusion and identify the 
regions of the brain that exhibit significant variability 
related to this sensorimotor paradigm. Given the well 
documented basis of this simple visuomotor task, we 
demonstrate the validity of SVT in identifying the motor 
strip activation, in Brodmann area 4, associated with 
each task. 

Let {X] )7� I contain the PET data for the six subjects 
scanned under the right-hand finger-tracking task. Let 
{Xf}7� I contain the PET signals taken during the oppo­
site left-hand motor task. Table 2 contains the results of 
the global tests for overall significance of the activa-

TABLE 1. Stochastic estimates versus exact values of correction Jactors (CFs) 

Region of interest 

CF evaluation Cerebellum Fronlal Occipital Parietal Temporal Insula Thalamus Caudate Putamen 

Stochastic 665 274 773 446 533 4,089 5,461 5,010 5,858 
estimate of CF 

Exact 661 272 766 443 529 4,052 5,411 4,980 5,803 
estimate of CF 
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TABLE 2. Subl'olulIle Thresholdillg global STaTisTical TeSTS all subTracTioll paradigm for ''fillger-Trackillg'' sTudy 

Region of interest 

Statistic Cerebellulll Frontal Occipital Parietal Temporal Insula Thalamus Caudate Putamen 

Global 19.14 12.46 12.33 0.71 3.03 2.87 5.75 2.98 

.:: score 

A high.:: score inclicalcs thai there are significant group diffrences between left- and righI-hand mOlOr tasks over the particular region or interest. 

tion in the entire ROls. We see that all ROls are globally 
activated except the temporal lobe. Note that the cerebel­
lum was excluded from this study due to data truncation 
in this region. The results of the second (local) SVT 
statistical testing identified the locations of the signifi­
cant group differences in this subtraction paradigm (Fig. 
3). Axial, coronal. and sagittal views of the statistically 
significant perfusion for the "left-right" (L-R) and "right­
left" (R-L) contrasts are depicted in Fig. 3. As expected. 

A 

c 

E 

the first subtraction activates the subjects' right premotor 
and motor cortex. The "right-left" contrast exhibits sig­
nificant activation in the subjects' left motor cortices. 

Table 3 contains the Talairach coordinates and the 
corresponding � scores of the centers of activation, in the 
primary motor cortex, as shown in Fig. 3. Positive and 
negative z scores correspond to positive and negative 
contrasts (i.e .. L-R and R-L) for the "left-right" finger­
tracking task, respectively. 

B 

D 

F 

FtG. 3. Sagittal, coronal, and axial 
views of the subvolume thresholding 
(SVT) statistical significance differ­
ence maps comparing left- versus 
right-hand finger-tracking task. Im­
ages A and B show the right and left 
hemispheres and the SVT maps for 
the left minus right hand (L-R) and 
right minus left hand (R-L) paradigms, 
respectively. Coronal views of the 
same activation differences are 
shown in images C and D. Bilateral 
simultaneous activations of the pre­
motor and the primary motor cortices 
for the two contrasts (L-R and R-L) 
are illustrated in transverse views on 
the bottom two images, E and F. 

J Compw AHi.H Tomogr. Vol. 24. No. I. 2000 
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TABLE 3. Talairach coordinates oj cenlers oj activation 
and corresponding z scores Jar some regions depicted il1 

Fig. 3 

Talairach coordinate 

Area x y z scores 

Lefl molor (4) -33 -26 40 6.7 

Left premolor (6) -34 1.5 36 22.0 

RighI molor (4) 29 -28 48 6.3 

RighI premolor (6) 24 48 7.0 

DISCUSSION AND CONCLUSIONS 

We introduce and validate the SVT technique for sta­
tistical analysis of multisubject functional data within a 
probabilistic anatomic atlas using a simple sensorimotor 
paradigm. We employed the anatomically subdivided 
ICBM probabilistic atlas to constrain our analysis. Fol­
lowing this partitioning step, two types of statistical tests 
were applied. The first separates the SVT method from 
other techniques of functional statistical analysis and is 
aimed at determining the global significance of the dif­
ferences between two groups over each search region 
separately. Depending on the anatomical structure and 
topology of a subvolume of interest, we determine an 
estimate for the pooled variance of the average across 
subjects and voxels. These estimates are then used to 
assess the globally significant variability of the data 
within each ROJ. 

The second step in statistical testing maps locally the 
voxels of significant functional group differences in each 
globally activated ROJ. This is a standard procedure in 
most techniques for functional statistical mapping. SVT 
differs from other appraoches in two ways: First, voxel 
location tests are run only over the search regions of high 
significance levels according to the first global test re­
sults, and second the variance estimates are pooled over 
subjects and across voxels (longitudinally-meridianally). 

In the SVT model, morphological and spatial registra­
tion differences between any two functional data sets are 
accounted for by using a probabilistic atlas that associ­
ates a probability value to each voxel to accommodate 
anatomic variability and registration error. Further, we 
analyze separate ROls in the difference image for acti­
vation using different stationary random field models 
and thus avoid the problem of nonuniform global activity 
and signal variance within the brain. 

The SVT method has three major assumptions: The 
difference images represent locally stationary random 
fields with Gaussian autocorrelation; the autocorrelation 
of two voxel intensities in two different subjects is inde­
pendent of the order of the subjects within the group; and 
(difference) image intensities at each voxel are normally 
distributed. These assumptions are shown to be reason­
able theoretically (based on the physics of functional 
imaging and the algorithms for PET image reconstruc­
tion) and empirically using real PET data. One drawback 
of the SVT method is that it uses the standardized mean 
to estimate global significance over ROIs. The presence 
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of positive and negative activation within an ROI may 
cause false-positive error. In practice, however, our ex­
periments (motor, education, and drug treatment subtrac­
tion studies) show that this is rarely the case because the 
probabilistic anatomic partition of the brain is driven by 
the anatomic question of the functional study. 

There are at least two other major approaches for deal­
ing with statistical mapping of functional brain data. The 
first one contains various multivariate techniques (18), 
where one obtains global statistical inference on the mul­
tivariate statistic over the entire brain but voxel-based 
analysis is not feasible (due to the number of voxels 
greatly exceeding the number of scans). Second are the 
univariate approaches. The most widely used univariate 
scheme is statistical parametric mapping (SPM) (19). 
SPM makes use of the general linear model, which in­
cludes localized t testing and linear regression and thus is 
more universally applicable for a variety of image mo­
dalities (PET, SPECT, functional MRI) and activation 
paradigms (subtractive, parametric, factorial) and a 
wider range of hypothesis testing. The SVT method, on 
the other hand, is more specialized for subtraction studies 
involving only PET and SPECT data. Whereas the SPM 
approach employs Worsley et al.'s (12) formulas for the 
expectation of the Euler characteristic of the excursion 
set above a given threshold value, a generalization of the 
theory of Gaussian field level crossing (15), the SVT 
relies on an intuitive and computationally attractive type 
of skew-Bonferroni correction for the large number of 
tests using nonindependent univariate statistics. Instead 
of fixing a p value and determining an appropriate 
threshold value for our statistical maps, we declare sta­
tistically significant the voxel locations where the uni­
variate statistics exceed the threshold associated with the 
p value of 0.05/111, where III is the number of uncorrelated 
voxels within each ROJ. This way, we avoid the problem 
of having to transform the observed t statistical image to 
an approximate 3D Gaussian random field using a uni­
variate transformation. This approximation requires high 
degrees of freedom (usually 2:::30) (J 9), which is rarely 
the case in PET/SPECT studies. Another distinction be­
twee the two methods is the fact that regional ROI sta­
tistical inferences are available through the SVT ap­
proach that are induced by the underlying anatomic 
probabilistic brain atlas. We consider a more general 
Gaussian field model where stationarity is imposed only 
locally within each ROI, and thus different subvolumes 
can, and oftentimes do, have quite different distribution 
parameters (means, variances). 

Empirical evidence for the differences between SPM 
and SVT is provided by comparing the two methods on 
the PET data discussed in Results. Figure 4 shows two 
axial views of the SPM maps (p = 0.025), which clearly 
indicate significant group differences (left- versus right­
hand finger tracking) in Brodmann areas 4 and 6. How­
ever, there are also significant differences present in 
white matter and CSF regions. 

We have also compared the SVT maps for this motor 
study with a uniform thresholding at level 2.5%. Uni-
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form thresholding at a levelr represents the lOp ro/c of the 
average difference intensity at each voxel. In other 
words, all voxel intensities are set to zero except the ones 
where the average diffrence is in the top r%. Figure 5 
illustrates in axial and sagittal views the bilateral motor 
strip and the left temporal lobe (� score 2.1) activations in 
the uniform (2.5%) statistical maps. Recall that accord­
ing to the SVT regional ROJ statistics (Table 2). the 
group differences between the left- and right-hand para­
digm are insignificant in the entire temporal lobe. 

In summary, SPM. uniform (2.5%), and SVT all cor­
rectly identify the paradigm-specific statistically signifi­
cant group di fferences (left and right motor cortex) be­
tween the left- and right-hand finger-tracking tasks. 
However. due to implicit foundational differences be­
tween these techniques (e.g .. variance estimates. assump­
tions of global stationarity), there are fine empirical 
variations in the corresponding statistical significance 
maps. 

FIG. 4. Axial views of the statistical 
parametric mapping statistical maps, 
illustrating significant right- versus 
left·hand finger-tracking differences. 
The right image shows group differ­
ences in the corpus callosum and the 
ventricles (arrows). 

APPENDIX 

Theoretical and Empirical Evidence in Support of 
SVT Hypotheses 

We now show theoretically. using the physical prop­
erties of the imaging process. and empirically, using 
plots of real PET data. that the hypotheses we make in 
our SVT model are reasonable. 

If we place a single point source of radioactive isotope 
in the center of a PET camera. the image we obtain looks 
smeared due to low pass filter processing (14) (see Fig. 
6). The smoothing kernel has a bell shape and can be 
modeled by a 20 normal distribution. There are two 
main reasons for observing (Gaussian) smooth PET im­
ages: The first is the physiology of brain function: Blood 
flow or metabolic change occurs smoothly and homoge­
neously. The second is the stochastic nature of the path 

FIG. 5. Axial and sagittal views of the uniform (2.5%) statistical maps, illustrating significant right- versus left-hand finger-tracking 
differences in areas 4 and 6 and the temporal lobe. 

J ComfJllt Ass;s{ TomoRr. Vol. 24. No, 1, 2000 
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FIG. 6. Spatial Gaussian voxel intensity correlation point source isotope data (left) and observed image (right). 

of the positively charged 13 particles (from their emission 
from the nucleus to their collision with negatively 
charged electrons) and the attenuation effects causing 
nearby voxels to have highly positively correlated inten­
sities. Coupling every detector in the PET scanner with 
several other detectors in the neighborhood of its 1800 
opposite also introduces a distance-dependent autocorre­
lation function similar to a Gaussian distribution. 

To explain the rationale behind the assumption of a 
normal distribution of voxel intensities, we again refer to 
the physics of PET imaging. A PET scan is constructed 
by detecting, comparing (times/places of arrival), and 
counting dual photons emitted in the process of positron­
electron annihilation. Photon strikes can be regarded as 
random arrivals and modeled as a discrete Poisson pro­
cess. Because of the large scale of this stochastic process, 
its distributioin can be approximated by a Gaussian (of 
mean zero and some unknown variance) (17). Empiri­
cally, we demonstrate the normal structure of the voxel 
intensities by taking 500 randomly selected intensities 
(that are far enough from each other and are not signifi­
cantly correlated) of a difference image. Figure 7 shows 
the values of the differences on the left and the quantiles 
of a normal distribution (having the sample mean and 

o '" 

o 100 300 

... axels 

. ' 

500 ·3 · 1 0 1 2 3 

Quantiles of Standard Normal 

FIG. 7. Normal nature of voxel intensities: 500 randomly chosen 
(uncorrelated) differences (left) and sample/normal quantiles plot 
(right). 
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variance of the difference data) on the right. The almost 
linear relation of the data and the normal quantiles sug­
gests that the sample was drawn from a (unknown) dis­
tribution closely related to normal. A Kolmogorov­
Smirnov (KS) normality test (20) provides an additinal 
quantitative argument to this effect. We applied a two 
sample KS test to a PET volume representing the differ­
ence of the two scans of the same subject under the 
identical functional paradigm: right-hand finger-tracking 
task with LED stimulus in the subject's right visual field. 
All PET data are in ICBM space (I). Using Splus, we 
compared the distribution of 500 not-sufficiently corre­
lated difference voxel intensities (farther than 15 mm 
apart) with a sample of 500 N(O, I) normally distributed 
random variables. The KS score of 0.058 and the corre­
sponding probability value of 0.3406 indicated that in­
deed the observed data can be assumed to be Gaussian. 

A Class of Valid Covariance Models 

We now show that the covariogram we adopted and 
used is permissible (valid); that is, it is underlined by a 
legitimate probability model. In general, a continuous 
function c(h): R" � R is an admissible covariance (co­
variogram) for a stationary random field Dx on R" (15) if 
and only if c(h) is nonnegative definite,

2 
that is . 

IT 11 

for all a = (ai' a2, ... , an)' E C', where c(xk - XI) 
Cov(D", D,,) and E(D xl = fl., V X by stationarity. 

In 1984 Christakos (21) proved the validity of large 
classes of covariograrnlvariogram models, including the 
case of Kp

llhlll using the Euclidean distance. To verify the 
validity of the covariance model c(h) = Kp

llhl� for any 

2The "bar" notal ion. -, indicates complex conjugal ion throughout 
this section. 
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positive integer p, we need the following spectral theory fact (22). If the Fourier transform of an L ,  function, c(h), 
is a nonnegative L,  function c(w), then c(h) is nonnega­
tive definite. 

To see the reason behind this result, choose c(h) 
E L , (R") whose Fourier transform exists and FT(c)(w) 

= c ( w )  = fR "c ( h ) e-2- rr ;<w . h>dh, then c ( h )  = 
fR',e2";<,,,."> c(w)dw (16). Therefore, 

( . ) - J 2";« W-<k>-<"'-" » '( )d c Xk - x, - R" e c w w 

Expanding the quadratic form, 

11 11 

L L aiiic(xk - x,) 
k=1 1=' 

- " " - f 2- n·;« "·.xk>-<"'.x·'» �( )d 
" " ( ) - £.; � aka, R" e c w W 

k=' 1=1 

- J 1 � 2TI;<"'_'I> 1 2 '( )d >- 0 - ..::.. a,e c w w _  R" 1=1 

The last inequality follows from the assumption that the 
Fourier transform of c(h) is nonnegative. 

We also need to argue that if I I-I I , is  the ' ,  norm on R3, 
(l Ihl l ,  = Ih d + Ih2 1  + Ih31 ), then the function c(h) = K p"""', 
o < p < I, induces a valid covariance functional 

Cov(D " , D X2) = C(x, ,x2) = c(x, - x2) 

3 
= c(h) = Kp""" ' = K II pl"kl 

k=' 

for any po§.!!!ve constant K (in our models, we have 
used K = u7) . 

We look at the Fourier transform 

FT(c) = c(w) = f f fR3c(h)e-2TI;<".W> dh 

where a = - In(p ) and bk = 2'TTwk. Further, I Ic( w)l l , < :le. 
The last equality follows from the fact that an integral of 

an odd function on a symmetric interval is zero. There­
fore, if a is a constant, 

fR e
-�'lae-2TILnvdx = fRe-�'la[cOS(2'TTXw) 

- i sin(hxw)]dx 

= 2 f;e-Ixln cos(2'TTxw)dx 

a 
= 2 

2 2 a + (2mv) 

Therefore, we see that the covariogram induced by the 
continuous function c(il) = Kpllhll' is indeed permissible. 

Observe, also, that similar approaches could be used to 
show that any lp norm on R" would induce an admissible 
covariogram model of the type c(h) = Kpll"I�. In addi­
tion, having that c(h) is valid on R" implies that it is also 
valid on R"-\ for 0 ,;; k < 11 (21,23). 

Acknowledgment: Grant support for this work was pro­
vided by an NIA award K08AG I 00784 (M.S.M.), the Howard 
Hughes Institute, Fu l l bright Commission, and grant no. G- I -
0000 I of the U.S.  Information Agency (P.M.T.); Human Brain 
Project ( N IMH/N I D A :  P20MHIDA 5 2 1 76), NLM ( LM/ 
MH05639), N INOS (NS 38753),  and NCRR (RR 1 3642) 
(A.W.T.); and NSF OMS-9403454 and NIH P20 MH57 1 80 
(1.0.0. and O.W.L.S.). 

REFERENCES 

I .  Mazziotta JC, Toga A W, Evans AC. Fox p, Lancaster S. A proba­
bilistic atlas of the human brain: theory and rationale for its de· 
velopment. Nellroimage 1 995:2:89- 1 0 1 .  

2 .  Talairach J ,  Tournoux P .  Principe e t  technique des etudes anatomi­
ques. In: Rayport M, cd. Co-planar stereotaxic atlas of {he human 
brain-3·dimellsiolla/ proportiollal system: all approach 10 cere· 
bral imaging. New York: Thieme Medical, 1988:3-9. 

3. Evans AC, Collins DL Holmes CJ. AlI/omalic 3D regional MRI 
segmentation and statisTical probabilistic anatomical maps. New 
York: Academic Press, 1 996: 1 2 3- 1 30. 

4. Mega MS, Thompson PM. Cummings JL, el al. Sulcal variabilily 
in the Alzheimer's brain: correlations with cognjtion. Neurology 
1 998;50: 145-5 1 .  

5. Thompson P, Schwartz C. Lin RT. Khan AA, Toga A .  Three­
dimensional statistical analysis of sulcal variability in the human 
brain. J Nellrosci 1 996:1 6:4261 -74. 

6. Thompson PM, MacDonald D, Mega MS. Holmes CJ, Evans AC, 
Toga AW. Detection and mapping of abnormal brain structure with 
a probabilistic atlas of cortical surfaces. J Comp/ll Assist Tomogr 
1 997:2 1 : 567-8 1 .  

7. Thompson P. Schwartz C, Lin RT, Khan AA, Toga A. Three­
dimensional statistical analysis of sulcal variabi lity in the human 
brain. J Nellrosci 1 996: 1 6:426 1-74. 

8. Friston KJ, Frith CD, Liddle PF, Dolan RJ, Frackowiak RSJ, Lam­
mertsma A A .  The relalionship bel ween the global and local 
changes in PET scans. J Cereb Blood Flow Metab 1 990; I 0:458-

66. 

9. Woods RP. Cherry SR. Mazziolta Jc. Rapid automated algorithm 
for aligning and reslicing PET images. J Compm Assist T011logr 
1 992: 16:620-33. 

10. Worsley K. Quadratic leslS for local changes in random fields with 
applications to medical images. Technical report, Dept. of Math 

and Stalislics, McGill Universily. Canada, Augusl 1 994. 

J Comptlt Assist Tomogr. Vol. 24. No. I, 2000 



138 I. D. DINOV ET AL. 

I I .  Woods RP, Mazziotta JC, Cherry SR. MRl-PET registration with 
automated algorithm. J Comput Assist Tomogr 1993; 1 7:536-46. 

1 2.  Worsley K, Evans AC, Marrett S, Neelin P. A three-dimensional 
statistical analysis for CBF activation studies in human brain. J 
Cereb Blood FlolV Metab 1992;1 2:900-18. 

13.  Antoine MJ, Trevere JM, Bloyet D. Modeling of 20 PET noise 
autocovariance function applied to individua1 activation studies. 
IEEE Medical Imaging Conference, Norfolk, V A, U.S.A.,  
1994;4: 1 628-32. 

14. Worsley K, Marrett S, Neelin P, Evans AC. Searching scale space 
for activation in PET images. Hum Brain Map 1 996;4:74-90. 

15.  Adler R. The geometry of random jields. New York: Wiley, 1 9 8 1 .  
1 6 .  Folland G .  Real analysis: modem techniques and their applica­

tions. New York: Wiley, 1984. 
17. Dinov ID. Mathematical and statistical techniques for modeling 

and analysis of medical data. Ph.D. thesis, Florida State University, 
ATTN: Interlibrary Loan Service, Dirac Science Library, Florida 

J Compw Assist Tomogr, Vol. 24, No. J. 20CJ0 

State University, Tallahassee, Florida 32306. Tel: (850) 644-2202. 
UMJ Dissertation Services, 300 North Zeeb Rd, Ann Arbor, MJ 
48 1 06- 1 346. Tel: (800) 5 2 1 -0600. The cost is $41 .50., 1998. 

1 8. Friston KJ, Poline JP, Strother S, Holmes AP, Frackowiak RSJ, 
Frith CD. A multivariate analysis of PET activation studies. Hum 
Brain Map 1 996;4: 140-5 1 .  

1 9 .  Friston KJ ,  Holmes AP, Worsley KJ ,  Poline J-P, Frith CD. Frack­
owiak RS1. Statistical parametric maps in functional imaging: a 
general linear approach. Hum Brain Map 1995;2: 189-210. 

20. Smimov NV. Table for estimating the goodness of fit of empirical 
distributions. Ann Math Stat 1 948. 

2 1 .  Christakos G. On the problem of permissible covariance and var­
iogram models. Water Resources Res 1 984;20:25 1-65. 

22. Bochner S. Lectures on Fourier integrals. Princeton: Princeton 
University Press, 1959. 

23. Cressie N. Statistics for spatial data. New York: Wiley, 1 99 1 .  


