Actual Condition | Test Interpretation | ||||

Absent ($H_0$ is true) | Present ($H_1$ is true) | ||||

Test Result | Negative (fail to reject $H_0$) | TNCondition absent + Negative result = True (accurate) Negative | FNCondition present + Negative result = False (invalid) Negative Type II error (proportional to $\beta$) | $NPV=Recall$ #' $=\frac{TN}{TN+FN}$ | #' |

Positive (reject $H_0$) | FPCondition absent + Positive result = False Positive Type I error ($\alpha$) | TPCondition Present + Positive result = True Positive | $PPV=Precision$ #' $=\frac{TP}{TP+FP}$ | #' | |

Test Interpretation | $Power =1-\beta$ #' $= 1-\frac{FN}{FN+TP}$ | $Specificity=\frac{TN}{TN+FP}$ | $Power=Sensitivity$
#' $=\frac{TP}{TP+FN}$ | $LOR=\ln\left (\frac{S1/F1}{S2/F2}\right )$ #' $=\ln\left (\frac{S1\times F2}{S2\times F1}\right )$, S=success, F=failure for 2 binary variables, $1$ and $2$ |