Scientific Methods for Health Sciences: Applied Inference (HS851): Fall 2014

http://www.socr.umich.edu/people/dinov/2014/Fall/HS851

Homework 4 Solutions

Use the SOCR Neuroimaging dataset of visceral pain, irritable bowel syndrome, ulcerative colitis, and Crohn's disease.

Problem 1: Is there evidence of hippocampal volume asymmetry in the IBS cohort? Formulate an appropriate research hypothesis, identify a suitable statistical technique, apply the corresponding software tool, and report your findings.
H_{0} : The mean difference between right and left hippocampal volumes is equal to 0 .
H_{A} : The mean difference between right and left hippocampal volumes is not 0 .

Symmetry of hippocampal volumes

A histogram of the difference between the two data sets reveal that the right hippocampus is a bit larger on average. The differences appear relatively normally distributed. We apply a paired t-test to assess our hypothesis.

We find a t-value of -14.74 with 336 df , which results in a p-value of less than $2.2 \mathrm{E}-16$. We therefore reject the null hypothesis and conclude that there is significant evidence to suggest that the right and left hippocampi have different volumes.

Problem 2: Assume the gender distributions of the participants in this study accurately represents the 4 cohorts (Normals, IBS, Ulcerative Colitis and Crohn's disease). Let's say we wish to compare the proportions of males in the Normals and IBS groups. Use the Methods of Moments to compute estimates (p_{1} and p_{2}) of the probabilities that a randomly selected male is from the asymptomatic normal control group (p_{1}) and a randomly selected male is from the IBS control group (p_{2}). Once you find the point estimates (p_{1} and p_{2}), perform a statistical test to assess the differences between the proportions of males in the Normals and IBS groups. Note that you need to invert the conditioning: $\mathrm{p}^{\prime}=\mathrm{P}($ male $\mid \mathrm{NC})$, and $\mathrm{p}^{\prime}{ }_{2}=\mathrm{P}$ (male|IBS). What is the confidence interval of the difference $\mathrm{p}^{\prime} 1-\mathrm{p}^{\prime} 2$?

	Male	Female	Totals
Normal	27	194	$\mathbf{2 2 1}$
IBS	24	83	$\mathbf{1 0 7}$
Totals	$\mathbf{5 1}$	$\mathbf{2 7 7}$	$\mathbf{3 2 8}$

H_{0} : The difference between the proportions of males in the normal and control groups equals 0.
H_{A} : The difference between the proportions of males in the normal and control groups is not equal to 0 .
$\alpha=0.05$

Assume a binomial model, $\mathrm{X} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$, where n is the number of trials (i.e., total number of males) and p is the number of successes (i.e., asymptomatic for p 1 and symptomatic for p 2).

$$
\begin{aligned}
& p_{1}=P(N C \mid \text { male })=\frac{27}{51}=0.53 \\
& p_{2}=P(I B S \mid \text { male })=\frac{24}{51}=0.47
\end{aligned}
$$

$\mathrm{E}[\mathrm{X}]=\mathrm{n}^{*} \mathrm{p}$
$\mathrm{n}^{*} \mathrm{p} 1=27$
$\mathrm{n}^{*} \mathrm{p} 2=24$
n=51
$\mathrm{p} 1=27 / 51=0.53$
$\mathrm{p} 2=24 / 51=0.47$
We ca use the inversion of conditioning to compute $\mathrm{p}^{\prime}{ }_{1}$ and p^{\prime} (or we can compute it directly from the given data in the table).
$p_{1}^{\prime}=P($ male $\mid N C)=P(N C \mid$ male $) \frac{P(\text { male })}{P(N C)}=\frac{27}{51} \frac{51 / 328}{221 / 328}=\frac{27}{51} \frac{51}{221}=0.1221719$,
${p^{\prime}}^{\prime}=P($ male $\mid I B S)=P(I B S \mid$ male $) \frac{P(\text { male })}{P(I B S)}=\frac{24}{51} \frac{51 / 328}{107 / 328}=\frac{24}{51} \frac{51}{107}=0.2242991$.
$p_{1}^{\prime}=$ Proportion of males in normal group: 27/221 $=0.122$
$p^{\prime}{ }_{2}=$ Proportion of males in IBS group: 24/107 $=0.224$
Difference in proportions: $(27 / 221)-(24 / 107)=-0.102$
n1 $=248$
n2=131
$\operatorname{SE}\left(p^{\prime} 1-p^{\prime} 2\right)=\left(\operatorname{sqrt}\left(p^{\prime} 1^{*}\left(1-p^{\prime} 1\right) / n 1+\left(p^{\prime} 2^{*}\left(1-p^{\prime} 2\right) / n 2\right)\right)\right.$
Z-score: Zo =-0.102 / SE(p'1-p'2) $=-2.22$
$\mathrm{P}(\mathrm{Z}<\mathrm{Zo})=0.0132$
Since $0.0132 * 2=0.0264<0.05$
The p-value is less than α; therefore, we reject the null hypothesis and conclude that there is a significant difference between the proportion of males in the IBS group and that in the control group.

95\% CI: [(p'1-p'2)-1.96*SE; (p'1-p'2)+1.96*SE)]= [-0.01207; -0.19218]
This interval does not include 0 , so our confidence interval agrees with our test that the difference is significant.

Problem 3: Use the SOCR Fligner-Killeen test to investigate if the variances of the white matter volume (WMV) between the 3 cohorts (Normals, IBS, Ulcerative Colitis) are significantly different. Why is this important? Repeat this analysis looking for differences in the variability of the gray matter volume (GMV) in the controls group between genders. Elaborate on your findings.

It is important to know whether variances among groups are similar because many other statistical tests (e.g., ANOVA) rely on the assumption that variances among groups are equal.

WMV in 3 groups

Group 1: Controls
Group 2: IBS
Group 3: Ulcerative colitis

R code:
fligner.test(list(wmv.1, wmv.2, wmv.3))
Fligner-Killeen test of homogeneity of variances
data: list(wmv.1, wmv.2, wmv.3)
Fligner-Killeen:med chi-squared $=3.0595, \mathrm{df}=2, \mathrm{p}$-value $=0.2166$
The high p-value (0.2166) suggests that the variances in WMV among the three groups are not significantly different.

The parallel results from SOCR:

Group Control
median $=526386.0$

Group IBS
median $=510069.0$
Group UC
median $=489523.0$
Total Size $=335$
Total Mean Score $=.795$
Total Variance $=.354$
Degrees of Freedom = 2
Chi-Square Statistic $=3.060$
P-Value $=.217$

GMV among groups

> fligner.test(list(gmv.1, gmv.2))
Fligner-Killeen test of homogeneity of variances
data: list(gmv.1, gmv.2)

Fligner-Killeen:med chi-squared $=0.277, \mathrm{df}=1, \mathrm{p}$-value $=0.5987$
The high p-value (0.5987) suggests that the variances in GMV among the two groups are not significantly different.

The parallel analysis and results in SOCR:

CALCULATE	EXAMPLE 1		EXAMPLE 2	EXAMPLE 3	EXAMPLE 4			CLEAR					
								DATA		MAPPING		RESULT	
males f	females	C3	C4	C5	C6	C	C7	C	C8		C9	C10	C11
572172	673617												
5856716	608842												
5838335	566926												
5161335	584741												
5708186	630158												
5122967	718007												
5909936	605422												
583785	509249												
4347635	508228												
430577	564193												
5722345	582039												
4531143	384022												
484690	536144												
5282345	573103												
584741	476284												
7180074	493260												
5054225	506546												
5641935	588193												
5820395	569848												
474696	536474												
5044675	566345												
5481496	683785												
5065465	548471												
569848	434763												
4882806	664602												
5604345	598462												
558783	518476												
5371826	616013												
5923025	560434												

\qquad

Results:
Group C1
median $=553466.0$
Group C2
median $=548471.0$

Total Size $=337$
Total Mean Score $=.795$
Total Variance $=.354$
Degrees of Freedom = 1
Chi-Square Statistic = . 277
P -Value $=.599$

Problem 4: Complete the following table, where patients indicates all study participant except the asymptomatic controls.

Groups	Patients	Controls	Total
Female 89 194 283 Male 27 27 54 Total 221 116 337y^{2}			

Compute a point estimate and a 95\% CI for the Odds Ratio of controls relative to gender. Next, apply the χ^{2} association test to investigate for association between participants' gender and diagnosis.

Odds of being female given being a patient compared to the odds of being female given being a control.
OR: (89/27) / (194 / 27) = 0.46
$\log (O R)=-0.78$
$\operatorname{SE}(\log (\mathrm{OR}))=\operatorname{sqrt}(1 / 89+1 / 27+1 / 194+1 / 27)$
$\mathrm{CI}(\log (\mathrm{OR}))=\left[\log (\mathrm{OR})-1.96 * \mathrm{SE}, \log (\mathrm{OR})+1.96^{*} \mathrm{SE}\right]=[-1.37,-0.19]$
$\mathrm{CI}(\mathrm{OR})=\exp (\mathrm{CI}(\log (\mathrm{OR}))=[0.25,0.83]$
The 95% confidence interval does not include 1 , so we can conclude that the odds of being female is higher among controls than among patients.

Chi-squared test
> chisq.test(tab, correct=F)
Pearson's Chi-squared test
data: tab
X-squared $=6.9136, \mathrm{df}=1, \mathrm{p}$-value $=0.008554$
The low p-value of 0.009 suggests that the distribution of gender is not independent of disease status.

The parallel results from SOCR:

CALCULATE CLEAR

	INPUT ${ }^{\text {I }}$ RESULT	
Select Significance Level: 0.05 *		
Select Number of Rows: 2		
Select Number of Columns: 2		
	Patients	Controls
Female	89	194
Male	27	27

Results of Chi-Square Test for Independent or Homogeneity
Number of Rows = 2
Number of Columns $=2$

Appendix: R code

\#
\# HW 4
\# Jennie Lavine
\# 10.29.14
\#
\#The data, hw4.csv, was imported by copying the data from
\#http://wiki.socr.umich.edu/index.php/SOCR Data April2011 NI IBS Pain,
\#pasting it into an Excel spreadsheet,
\#and saving as a comma-separated (i.e., .csv) file.

```
setwd('~/hw4_851')
dat<-read.csv('hw4.csv')
```

\#
\# Problem 1
\#
mean(dat\$L_hippocampus)
mean(dat\$R_hippocampus)
par(mfrow=c(2,1))
hist(dat\$L_hippocampus)
hist(dat\$R_hippocampus)
$\operatorname{par}(m f r o w=c(1,1))$
hist(dat\$L_hippocampus-dat\$R_hippocampus, main='Symmetry of hippocampal volumes', xlab='Difference between L and R^{\prime})
hippo_t.test <- t.test(x=dat\$L_hippocampus, $\mathrm{y}=$ dat\$R_hippocampus, paired=T)
hippo_t.test
\#
\#Problem 2
\# datsub<-subset(dat, dat\$Group==1 | dat\$Group==2)
datsub<-datsub[,c('Group','Sex')]
margin.table(table(datsub), 1)
margin.table(table(datsub), 2)
prop.table(table(datsub))
p1 <- 27/51
p2 <-24/51
p1=27/221
p2=24/107
n1 $=27+221$

```
zscore = (p1-p2 / (sqrt(p1*(1-p1)/n1 + (p2*(1-p2)/n2)))
```

pnorm(zscore, 0,1)
conf.int.95<- c(
(p1-p2)-1.96* $\left(\operatorname{sqrt}\left(p 1^{*}(1-\mathrm{p} 1) / \mathrm{n} 1+\left(\mathrm{p} 2^{*}(1-\mathrm{p} 2) / \mathrm{n} 2\right)\right)\right)$,
(p1-p2) $+1.96^{*}\left(\operatorname{sqrt}\left(p 1^{*}(1-p 1) / n 1+\left(p 2^{*}(1-p 2) / n 2\right)\right)\right)$
)
\# \#Problem 3
\#
wmv.1<-dat\$WMV[dat\$Group==1]
wmv. $2<-$ dat\$WMV[dat\$Group==2]
wmv.3<-dat\$WMV[dat\$Group==3]
datsub<-subset(dat, dat\$Group!=5)
datsub\$Group<-factor(datsub\$Group)
boxplot(WMV~as.factor(Group), data=datsub)
fligner.test(list(wmv.1, wmv.2, wmv.3))
gmv. $1<-$ dat\$GMV[dat\$Group==1]
gmv. $2<-$ dat\$GMV[dat\$Group==2]
gmv.3<-dat\$GMV[dat\$Group==3]
datsub<-subset(dat, dat\$Group!=5)
datsub\$Group<-factor(datsub\$Group)
boxplot(GMV~as.factor(Group), data=datsub)
fligner.test(list(gmv.1, gmv.2, gmv.3))
\#
\#Problem 4
\#
datsub<-dat[, c('Group','Sex')]
datsub\$group.bin<-NA
datsub\$group.bin[datsub\$Group==1]<-1
datsub\$group.bin[datsub\$Group!=1]<-2
tab<-table(datsub[,2:3])
margin.table(tab,1)
margin.table(tab,2)
sum(tab)
OR <- (89*27)/(194*27)
$\log (\mathrm{OR})$
se.log.or <- sqrt(sum(1/c(tab)))
ci.log.or<- c(log(OR)-1.96*se.log.or, $\log (O R)+1.96^{*}$ se.log.or) exp(ci.log.or)
chisq.test(tab, correct=F)

