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Scientific	Methods	for	Health	Sciences:	Applied	Inference	(HS851):	Fall	2014	
http://www.socr.umich.edu/people/dinov/2014/Fall/HS851		

Homework	2	Solutions	
	
 
  Problem 1: There is great interest in comparing different countries in the world based on a variety of factors reflecting 
the country's internal and external international ranking. Use the Political, Economic, Health, and Quality-of-Life Data of 
100 Countries to estimate the probabilities below. Let ED=Economic Dynamism of a Country, which is an index of 
productive growth in US dollars. Use the SOCR Modeler to fit a Normal Distribution Model to the ED variable (column) 
in this dataset (see this Help page). Once you obtain estimates for the mean and standard deviation of the normal model 
(see the Results tab in the Modeler) use the SOCR Normal Distribution Calculator to estimate the likelihoods of these 
events:  
 

Histogram of ED data 
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 Sample snapshot for calculating P(35 ≤ ED ≤ 43) = 0.1931296 
 

 
 

 P(ED ≤ 46) =  0.47 
 P(35 ≤ ED ≤ 43) = 0.193 
 P(48 ≤ ED) = 0.47 
 P(53 ≤ ED) = 0.33 
 P(47 ≤ ED ≤ 87) = 0.50 
 P(15 ≤ ED ≤ 51) = 0.60 

	
	
Problem	2:	During	a	typical	24‐hour	shift	in	the	ER,	the	healthcare	providers	(doctors,	nurses,	staff)	
expect	to	see	132	emergency	visits	including	10	traumatic	brain	injuries	(TBIs).	Find	the	probability	that	
the	ER	team	will	see	over	145	cases	in	total	and	the	probability	that	there	will	be	between	8	and	11	TBIs	
within	a	given	24‐hour	period.	Recall	that	the	Poisson	Distribution	can	be	used	as	a	model.	
	
	

	
	

P(#	of	patients>145)	=	0.12	
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P(8	<=		#	TBI	<=	11)	=	0.48	

	
		Problem	3:	Many	clinical	and	translational	studies	involve	multiple	variables	(or	events)	that	may	be	
independent	of	one	another	or	closely	associated.	Identifying	and	untangling	data	dependencies	is	critical	
in	such	situations.	We	can	use	the	SOCR	Coin	Die	Experiment	to	simulate	dependence	between	clinical	
variables.	Suppose	we	have	2	discrete	clinical	variables,	for	example,	X={stage	of	melanoma}	(categorical)	
and	Y={gender}	(dichotomous).	We	can	simulate	this	situation,	specifically	simulate	event	independence	
between	the	outcome	of	a	die	(event	B,	representing	the	cancer	stage)	and	the	outcome	of	a	coin	(event	A,	
representing	the	patient	gender).	In	the	SOCR	Coin	Die	Experiment	set	the	probabilities	of	both	dice	to	be	
identical.	Run	100	experiments	and	argue	that	the	observed	data	implies	independence	between	the	
events	A={Coin=Head,	say	male}	and	B={Die=3,	say	stage	3	melanoma},	i.e.,	P(AB)	=	P(A)	P(B),	
approximately.	You	basically	need	to	count	the	proportion	of	times	each	of	the	tree	events	(A,	B	and	
C={A∩B})of	interest	occur	in	the	100	experiments	and	validate	(or	disprove)	the	equality	above.	Also,	try	
this	with	a	larger	number	of	experiments	(e.g.,	n=10,000).	Next,	make	the	probability	distributions	of	the	
two	dice	different	(by	clicking	on	the	dice	and	manually	changing	the	die	probabilities).	Show	empirically	
the	dependence	of	the	probabilities,	A={Coin=Head}	and	B={Die=3}.	Do	we	have	evidence	of	
independence	or	association	in	the	outcomes?		
	

Results	with	two	fair	dice	
	 1	 2	 3 4 5 6 Total
Head	 4	 6	 4 10 12 7 43	
Tail	 6	 10	 10 12 12 7 57	
Total	 10	 16	 14 22 24 14	 100

	
P({Coin=head}	⋂	{Die=3})	=	4/100	=	0.04	
P(Coin=head)	×	P(Die=3)	=	(43/100)	×	(14/100)	=	0.06	

	
The	numbers	are	similar,	so	the	events	are	likely	independent.	
	
Results	with	one	unfair	die.	
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	 1	 2	 3 4 5 6 Total
Head	 9	 6	 7 7 8 11	 48	
Tail	 8	 9	 9 8 9 9 52	
Total	 17	 	 15	 16 15 17 20	 100

	
P({Coin=head}	⋂	{Die=3})	=	7/100	=	0.07	
P(Coin=head)	×	P(Die=3)	=	(48/100)	*	(16/100)	=	0.08	

	
These	numbers	are	not	far	off,	so	there	does	not	seem	to	be	strong	evidence	for	independence.		Now	let’s	
try	these	with	larger	sample	sizes	(i.e.,	10,000	instead	of	100	runs).	
	
	

With	larger	sample	size	and	fair	dice:	
	 1	 2	 3 4 5 6 Total
Head	 827	 857	 812 848 811 887	 5042
Tail	 839	 825	 762 827 841 864	 4958
Total	 1666	 1682	 1574 1675 1652 1751	 10000

	
P({Coin=head}	⋂	{Die=3})	=	812/10000	=	0.08	
P(Coin=head)	×	P(Die=3)	=	(5042/10000)*(1574/10000)	=	0.08	

	
These	probabilities	are	equal	and	the	sample	size	is	large,	so	it	seems	likely	the	events	are	independent.	
	

With	larger	sample	size	and	one	unfair	die	
(Probabilities	of	1‐6	after	flipping	a	tail,	respectively,	0.05	0.20	0.25	0.25	0.20	0.05)	
	 1	 2	 3 4 5 6 	
Head	 830	 797	 815 833 812 812	 4899
Tail	 244	 1051	 1323 1224 1008 251	 5101
	 1074	 1848	 2138 2057 1820 1063	 10000

	
P({Coin=head}	⋂	{Die=3})	=	815/10000	=	0.08	
P(Coin=head)	×	P(Die=3)	=	(4899/10000)	*	(2138/10000)	=	0.1	

	
The	probabilities	are	different	this	time!		So,	the	events	seem	dependent.	
	
Let’s	see	how	the	results	compare	to	their	expectations,	given	their	exact	probabilities:	
	

P({Coin=head}	⋂	{Die=3})=	P(3	|	head)	*	P(head)	=	(1/6)*0.5	=	0.08	
	
P(Coin=head)	×	P(Die=3)	=	0.5*(0.5*(1/6)	+	0.5*(1/4))	=	0.1,		
where	P(3)	=	P(3|head)P(head)	+	P(3|tail)P(tail),	and	a	head	coin	outcome	requires	
tossing	the	fair	die,	whereas	a	tail	coin	outcome	requires	a	toss	of	the	loaded	die.			

	
	
Problem	4:	Using	the	SOCR	Clinical,	Genetic	and	Imaging	Data	of	Alzheimer’s	Disease:		
Part	1:	Using	these	2	groups:	Group0={CDGLOBAL=0}	vs.	Group1={CDGLOBAL=1},	compute	the	
correlations	between	systolic	and	diastolic	blood	pressure	(VSBPSYS	and	VSBPDIA)	within	each	group	(ro	
and	r1).	Then	test	a	hypothesis	for	the	equivalence	of	these	correlations.	
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Correlation	for	CDGLOBAL=0:	0.44	(r.0)	
Correlation	for	CDGLOBAL=1:	0.41	(r.1)	
	
Test	for	difference	between	correlation	coefficients:	
Fisher‐transformed	r00	=	0.5*log(abs((1+r.0)/(1‐r.0)))	=	0.47	
Fisher‐transformed	r11	=	0.5*log(abs((1+r.1)/(1‐r.1)))	=	0.43	
Z‐score	=	(r00‐r11)/sqrt((1/(695‐3))+(1/(48‐3)))	=	0.27	
	
We	can	now	use	this	Z‐score	to	assess	the	probability	of	seeing	a	result	this	extreme	or	more	extreme	by	
chance	under	the	Null	hypothesis	(given	that	the	two	correlations	are	in	fact	equal)	by	using	the	2‐tailed	
probability	in	the	normal	distribution	past	0.27	SDs	from	0	on	either	side.		We	get	p=0.78.		This	means,	if	
the	two	means	were	in	fact	equal,	we	would	expect	a	difference	between	correlation	coefficients	this	
great	or	greater	by	chance	78%	of	the	time.		We	therefore	fail	to	reject	the	null	hypothesis	that	the	two	
correlation	coefficients	are	equal.	The	interpretation	of	this	results	is	that	the	data	does	not	support	
evidence	suggesting	the	correlations	between	systolic	and	diastolic	blood	pressure	are	different	between	
the	2	cohorts,	Group0={CDGLOBAL=0}	vs.	Group1={CDGLOBAL=1}.	
	
Part	2:	Fit	a	simple	linear	model	for	VSTEMP	and	Weight_Kg.	Formulate	and	assess	a	hypothesis	about	
trivial	slope	of	the	regression	curve	on	these	two	variables.	Elaborate	on	your	findings.	

H0:	Temperature	and	weight	are	independent	and	the	slope	of	the	best	fit	line	equals	0.	
	
Ha:	Temperature	and	weight	are	correlated	and	the	slope	of	the	best	fit	line	is	significantly	different	from	
0.	
	
	

	
	

Slope:	‐0.001	
Standard	error:	0.002	

	
Zero	is	within	one	standard	error	of	the	estimated	slope,	so	we	are	not	at	all	confident	that	the	slope	is	
significantly	different	from	0.		We	fail	to	reject	the	null	hypothesis,	H0.	
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Appendix:	R	Code	
	
###################################	
#	Jennie	Lavine	
#	9/17/2014	
#	HW	#2,	HS851	
##################################	
setwd('~/hw2_851')	
	
###############################	
#Problem	1	
###############################	
world.dat	<‐	read.csv('world_data.csv')	
	

ED<‐world.dat$ED	
	
hist(ED)	
mean(ED)	
sd(ED)	
var(ED)	

	
#pnorm	is	the	R	function	that	computes	the	CDF,		
#that	is,	it	computes	the	area	under	the	curve	to	the	left	of	your	cut‐off	value	(q)	
	
#	P(ED	≤	46)	

pnorm(q=46,mean=mean(ED),	sd=sd(ED))	
	
#	P(35	≤	ED	≤	43)	

pnorm(q=43,mean=mean(ED),	sd=sd(ED))	‐	pnorm(q=35,mean=mean(ED),	sd=sd(ED))	
	
#	P(48	≤	ED)	

1	‐	pnorm(q=48,mean=mean(ED),	sd=sd(ED))	
	
#	P(53	≤	ED)	

1	‐	pnorm(q=53,mean=mean(ED),	sd=sd(ED))	
	
#	P(47	≤	ED	≤	87)	

pnorm(q=87,mean=mean(ED),	sd=sd(ED))	‐	pnorm(q=47,mean=mean(ED),	sd=sd(ED))	
	
#	P(15	≤	ED	≤	51)	

pnorm(q=51,mean=mean(ED),	sd=sd(ED))	‐	pnorm(q=15,mean=mean(ED),	sd=sd(ED))	
	
################################	
#Problem	2	
##############################	
#	We	assume	the	clinic	entries	and	TBI	are	Poisson	distributed	with	parameter	lambda	=	132	and	10,	
respectively.	
	

1	‐	ppois(q=145,	lambda=132)	
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ppois(q=12,	lambda=10)	‐	ppois(q=8,	lambda=10)	
	
##############################	
#Problem	3	
#############################	
#simulate	100	coinflips	followed	by	100	die	rolls	
	
#Define	the	number	of	repetitions	of	the	experiment,	N	

N=10000	
	
#Set	up	an	empty	matrix	to	put	the	results	in	
	

sim.res<‐matrix(NA,	nrow=N,	ncol=2)	
colnames(sim.res)<‐c('coin','die')	
sim.res<‐as.data.frame(sim.res)	

	
#Define	the	probabilities	of	each	value	on	the	dice	for	die	1	and	2	
#This	example	shows	one	die	with	different	probabilities.	

die1.probs<‐rep(1/6,	6)	
die2.probs<‐c(1,4,5,5,4,1)	
die2.probs<‐die2.probs/sum(die2.probs)	

	
#Simulate	coin	flips	using	the	function	'sample'	

sim.res[,'coin']<‐sample(c(0,1),	size=N,	replace=T)	
	
#Simulate	die	rolls	from	the	fair	die	(die1)		
#if	a	head	is	flipped	(i.e.,	coin==0)	

sim.res[sim.res[,'coin']==0,'die']<‐sample(1:6,	sum(sim.res[,'coin']==0),		
																																											replace=T,	prob=die1.probs)	
#Simulate	die	rolls	from	the	unfair	die	(die2)		
#if	a	tail	is	flipped	(i.e.,	coin==1)	

sim.res[sim.res[,'coin']==1,'die']<‐sample(1:6,	sum(sim.res[,'coin']==1),		
																																											replace=T,	prob=die2.probs)	
	
#Tabulate	the	results	

table(sim.res)	
#Calculate	the	margins	

apply(table(sim.res),	1,	sum)	
apply(table(sim.res),	2,	sum)	

	
###########################	
#Problem	4	
###########################	
#Read	in	the	data	

alz.dat<‐read.csv('alzheimers.csv')	
	
#Obtain	subsets	of	the	data	that	correspond	to	the	rows		
#for	which	the	variable	CDGLOBAL	takes	on		
#the	value	of	interest	(i.e.,	0	for	one	set	and	1	for	the	other)	



http://www.socr.umich.edu/people/dinov/2014/Fall/HS851/HWs.html		 	 								8	
	

	
cdglob.0	<‐	subset(alz.dat,	alz.dat$CDGLOBAL==0)	
dim(cdglob.0)	
cdglob.1	<‐	subset(alz.dat,	alz.dat$CDGLOBAL==1)	
dim(cdglob.1)	

	
#Plot	the	data	

par(mfrow=c(1,2))	
plot(cdglob.0[,'VSBPSYS'],	cdglob.0[,'VSBPDIA'],	main='Diastolic	vs	Systolic		
					BP	with	no	dementia',	xlab='Systolic	BP,	mmHG',	ylab='Diastolic	BP,	mmHG')	
plot(cdglob.1[,'VSBPSYS'],	cdglob.1[,'VSBPDIA'],	main='Diastolic	vs	Systolic		
					BP	with	dementia',	xlab='Systolic	BP,	mmHG',	ylab='Diastolic	BP,	mmHG')	

	
#Use	the	'cor'	function'	to	calculate	the	correlations	

r.0	<‐	cor(cdglob.0$VSBPDIA,	cdglob.0$VSBPSYS)	
r.1	<‐	cor(cdglob.1$VSBPDIA,	cdglob.1$VSBPSYS)	

	
#Show	that	the	correlation	can	be	calculated	as	follows	
#using	cdglob.0	as	an	example.	

x=cdglob.0$VSBPDIA	
y=cdglob.0$VSBPSYS	
n=length(x)	
cor.xy	<‐	1/(n‐1)*sum(((x‐mean(x))/sd(x))*((y‐mean(y))/sd(y)))	

#this	checks	out,	we	get	the	same	answer	as	using	the	'cor'	function	
	
####Testing	for	equivalence	of	correlations	

r00	<‐	0.5*log(abs((1+r.0)/(1‐r.0)))	
r11	<‐	0.5*log(abs((1+r.1)/(1‐r.1)))	
n.0	<‐nrow(cdglob.0)	
n.1	<‐	nrow(cdglob.1)	
z.val	<‐	(r00‐r11)/sqrt((1/(n.0‐3))+(1/(n.1‐3)))	
2*(1‐pnorm(z.val))	

	
#########################	
#Problem	4	part	2:	simple	linear	model	
#########################	
	

y=alz.dat$VSTEMP	
x=alz.dat$Weight_Kg	
far.ind<‐which(y>70)	
y<‐y[far.ind]	
x<‐x[far.ind]	
fit	<‐	lm(y~x)	
par(mfrow=c(1,1))	
plot(x,y,main='Temperature	vs.	Weight',xlab='Weight	(Kg)',ylab='Temp')		
abline(fit)	
	
summary(fit)	


